
1-4.1

Spiral 1 / Unit 4 Verilog HDL

Mark Redekopp

1-4.2

OVERVIEW

1-4.3

Digital Circuit Design Steps

• Description

– Design and computer-entry of circuit

• Verification

– Simulate design for correctness

• Synthesis

– Determine components/gates and their connections

• Place and Route

– Determine the physical placement and wire connections 

between components on actual silicon

• ASIC Fabrication / FPGA implementation

1-4.4

Digital Circuit Design

Design FilesSimulator
Component 

Netlist

Input 
Stimulus

(Testbench)

Synthesis
Place and 

Route

Meets 
Constraints

Design 
Correct

FPGA 
configuration 
/ ASIC netlist

Meets Constraints



1-4.5

Step 1:  Description

• Much of the design process is done by a computer

• Human designers must describe and capture their 

circuits into a format a computer can use

• 1 form for use usually only at the transistor level:

– Schematic Entry: computerized drawing of the 

gates/transistors and components and their connections

• 2 forms used for large digital designs

– HDL (Hardware Description Language): text description of 

circuit (similar to programming languages)

– Behavioral descriptions (C, Matlab, etc.)

1-4.6

Schematic Entry

• Schematics

– Graphically “draw” the gates, components, and connecting wires of a 

design

– Requires design at the structural level (i.e. must specify design down to 

the exact gate interconnections)

– Hard to manage for large designs

– Not as commonly used in industry as HDL’s

X

Z

Y

W

F

1-4.7

HDL’s

• “Programming” languages that describe hardware 
components (e.g. Verilog, VHDL)

• Functional descriptions (describe function at high 
level) or structural descriptions of digital components

• Easier to manage large designs

assign F = WX + ~WY

or

if (W==1 && X==1)

F <= 1;

else if (W==0 && Y==1)

F <= 1;

else

F <= 0;

and mygate0(n1,w,x);

not mygate1(not_w, w);

and mygate2(n2,not_w,y)

or mygate3(f,n1,n2);

StructuralFunctional

1-4.8

Step 2: Simulation

• Exercises the description of the 
circuit

• Designer provides input stimulus to 
the circuit

– Set X=1 at 5 ns.

– Set Y=1 at 8 ns.

• Simulator will run inputs through 
your proposed circuit and show the 
outputs it would generate

• Use waveforms (values over time to 
see the behavior of a circuit)

• Designer must know what to expect 
and check against what is produced

time

5ns 10ns 15ns

In
p

u
ts

O
u

tp
u

t

X

Y

F = X and Y

X

Y
F



1-4.9

Step 3: Synthesis

• Takes in design files along with time and area 

constraints to find what parts are needed and how 

they should be connected

assign F = ~(C16 & (C8 | C4))

Synthesis

max delay: 4ns

max area: 50 cells

Design
Constraints

2ns

2ns

1-4.10

Step 3: Synthesis

• Able to take a functional description and convert 

to AND/OR gate design

assign count[4:0] = {C16,C8,C4,C2,C1};

always @*

begin

if(count < 20) 

F = 1;

else 

F = 0;

end

Synthesis

1-4.11

Step 4: Place and Route

• Finds where each gate should be placed on the chip 

and how to route the wires that connect to it

• Affects timing and area

– wiring takes up space and longer wires lead to longer 

delays

Chip

1-4.12

Digital Design Targets

• Two possible implementation targets

– Custom Chips (ASIC’s = Application Specific Integrated 

Circuits):  Physical gates are created on silicon to 

implement 1 particular design

– FPGA (Field Programmable Gate Array’s):  Prefabricated 

chips that we can configure and reconfigure to perform 

digital logic functions

FPGA’s have logic 
resources on them that we 

can configure to 
implement our specific 
design.  We can then 

reconfigure it to 
implement another design

In an ASIC design, a 
unique chip will be 
manufactured that 

implements our design 
and cannot be 

reconfigured (example: 
Pentium, etc.)

FPGA



1-4.13

VERILOG AND HDLS

1-4.14

Purpose

• HDL’s were originally used to model and 

simulate hardware before building it

• In the past 20 years, synthesis tools were 

developed that can essentially build the 

hardware from the same description

• Common ones:

– Verilog and SystemVerilog

– VHDL

– SystemC

1-4.15

Differences from Software

• Software programming languages are inherently sequential 

– Operations executed in sequential order (next, next, next)

• Hardware blocks always run in parallel (at the same time)

– Uses event-driven paradigm (change in inputs causes expression to be 
evaluated)

• HDL’s provide constructs for both parallel & sequential operation

assign f = a & b;

assign g = a | b;

var = x+y;

tmp = d-c;

Software
Perform x+y and when that is 

done assign d-c to tmp

Hardware
This description models 2 gates 

working at the same time

Event Driven Paradigm:  
If a or b changes, f and g 

will be re-evaluated

1-4.16

Modules

• Each Verilog designs starts as a block diagram (called 
a “module” in Verilog)

• Start with input and output signals, then describe 
how to produce outputs from inputs

module m1(x,y,z,f,g);

// circuit 

// description

endmodule

Software analogy:  Modules are like functions, but also like classes in 
that they are objects that you can instantiate multiple times.

Module

x

y

z[2:0]

f

g



1-4.17

Ports

• Input and output signals of a module are called “ports” 
(similar to parameters/arguments of a software function)

• Unlike software, ports need to be declared as “input” or 
“output”

• Vectors declared using [MSB : LSB] notation

Module

module m1(x,y,z,f,g);

input  x,y;

input  [2:0] z;

output f;

output [1:0] g;

endmodule

x

y

z[2:0]

f

g[1:0]

These are the ports

1-4.18

Signal Types

• Signals represent the inputs, outputs, and 
internal values

• Signals need to be typed 
– Similar  to variables in software (e.g. int, char)

• 2 basic types 
– Wire:  Represents a node connecting two 

logic elements 
• Only for modeling combinational logic

• Used in “assign” statements 

• Use for signals connecting outputs of 
instantiated modules (structural modeling)

– Reg: Used for signals that are described 
behaviorally 

• Used to model combinational & sequential 
logic

• Used for anything produced by an “always” or 
“initial” block

module m1(x,y,z,f,g);

input  x,y;

input  [2:0] z

output f;

output reg [1:0] g;

wire   n1, n2;

reg    n3, n4;

...

endmodule

Inputs are always type 
‘wire’. Outputs are assumed 

‘wire’ but can be redefined 

as ‘reg’

1-4.19

Constants

• Multiple bit constants can be written in the form:

– [size] `base value

• size is number of bits in constant 

• base is o or O for octal, b or B for binary, d or D for decimal, h or H for 

hexadecimal

• value is sequence of digits valid for specified base

– Values a through f (for hexadecimal base) are case-insensitive

• Examples:

– 4’b0000     // 4-bits binary

– 6’b101101 // 6-bits binary

– 8’hfC         // 8-bits in hex 

– Decimal is default

– 17              // 17 decimal converted to appropriate # of unsigned bits

1-4.20

Structural vs. Behavioral Modeling

Structural

• Starting with gates, build up 

a hierarchy of components 

and specify how they 

should be connected 

Behavioral

• Describe behavior and let 

synthesis tools select 

internal components and 

connections



1-4.21

Structural Modeling

• Starting with primitive gates, build 

up a hierarchy of components and 

specify how they should be 

connected 

X Y

S

Co

Half 

Adder

Structural 
specification of 

a half adder

Use HA’s to structurally describe incrementer

module ha(x,y,s,co);

input    x,y;

output   s,co;

assign s = x ^ y; // xor

assign co = x & y; // and

endmodule

module incrementer(a,z);

input    [3:0] a;

output   [3:0] z;

wire     [3:1] c;

ha ha0(a[0],1,z[0],c[1]);

ha ha1(a[1],c[1],z[1],c[2]); 

ha ha2(a[2],c[2],z[2],c[3]); 

ha ha3(a[3],c[3],z[3], ); 

endmodule

1-4.22

Structural Modeling of Logic Gates

• Modules and primitive gates can be instantiated 
using the following format:

module_name instance_name(output, input1, input2,…)

• Input and outputs must be wire types

• Supported Gates: and, or, not, nand, nor, xor, xnor

module m1(c16,c8,c4,f);

input    c16,c8,c4;

output   f;

wire     n1;

assign n1 = c8 | c4;

assign f = ~(c16 & n1);

endmodule
“n1”

net (wire)

Verilog Description

“i2”
instance name

1-4.23

Instantiating User-Defined Modules
• Format:  module_name instance_name(port1, port2, port3, …)

• Positional mapping

– Signals of instantiation ports are associated using the order of module’s port 

declaration (i.e. order is everything)

• Named mapping

– Signals of instantiation ports are explicitly associated with module’s ports (i.e. 

order is unimportant)

– module_name instance_name(.module_port_name(signal_name),…);

module ha(x,y,s,co);

...

endmodule

module incrementer(a,z);

ha ha0(a[0],1,z[0],c[1]);

...

endmodule

module ha(x,y,s,co);

...

endmodule

module incrementer(a,z);

ha ha0(.x(a[0]),

.s(z[0]),

.y(1),

.co(c[1]) );

...

endmodule

Positional mapping

Named 
Mapping

1-4.24

Internal Signals

• Define signals (wire or reg) for each internal 

signal/wire

module m2(x,y,z,f);

input  x,y,z;

output f;

wire   n1,n2,n3;

assign n1 = x & z;

assign n2 = x & y;

assign n3 = ~z;

assign f = n1 | n2 | n3;

endmodule



1-4.25

Behavioral Modeling

• Describe behavior and let synthesis tools select internal 

components and connections

• Advantages:  

– Easier to specify

– Synthesis tool can pick appropriate implementation (for 

speed / area / etc.)

Use higher level operations and let synthesis 
tools infer the necessary logic

module incrementer(a,z);

input    [3:0] a;

output   [3:0] z;

assign z = a + 1'b1;

endmodule

Could instantiate a ripple-

carry adder, a fast carry-

lookahead adder, etc. as 

needed

1-4.26

Operators

• Operator types

– Non-blocking / Blocking assignment ( <=, = )

– Arithmetic (+, -, *, /, %)

– Relational (<, <=, >, >=)

– Equality (= =, !=, = = = , ! = =)

– Logical (&&, ||, !)

– Bitwise (~, &, |, ^, ~^)

– Reduction (&, ~&, |, ~|, ^, ~^)

– Shift (<<, >>)

– Conditional ( ? : )

– Concatenation and replication 

1-4.27

Assign Statement
• Used for combinational logic 

expressions (must output to a ‘wire’ 

signal type)

• Can be used anywhere in the body of a 

module’s code

• All ‘assign’ statements run in parallel

• Change of any signal on RHS (right-

hand side) triggers re-evaluation of 

LHS (output)

• Format:  

– assign output = expr;

• ‘&’ means AND

• ‘|’ means OR

• ‘~’ means NOT

• ‘^’ means XOR

module m1(c16,c8,c4,f);

input    c16,c8,c4;

output   f;

wire     n1;

assign f = ~(c16 & (c8 | c4));

endmodule

1-4.28

Multi-bit (Vector) Signals

• Reference individual bits 
or groups of bits by 
placing the desired index 
in brackets 
(e.g. x[3] or x[2:1])

• Form vector from 
individual signals by 
placing signals in 
brackets 
(i.e. {  }) and separate 
with commas

module m1(x,f);

input [2:0] x;

output      f;

// f = minterm 5

assign f = x[2] & ~x[1] & x[0];

endmodule

module incrementer(a,x,y,z);

input [2:0] a;

output x,y,z;

assign {x,y,z} = a + 1;

endmodule



1-4.29

More Assign Statement

• Can be used with other 

operators besides simple 

logic functions

– Arithmetic (+, -, *, /, 

%=modulo/remainder) 

– Shifting (<<, >>)

– Relational 

(<, <=, >, >=, !=, ==)

• Produces a single bit output 

(‘1’ = true / ‘0’ false)

– Conditional operator ( ? : )

• Syntax:  

condition ? statement_if_true : statement_if_false;

module m1(x,y,sub,s,cout,d,z,f,g);

input    [3:0] x,y;

input          sub;

output   [3:0] s,d;

output   [3:0] z;

output         cout,f,g;

assign {cout,s} = {0,x} + {0,y};

assign d = x – y;

assign f = (x == 4’h5);

assign g = (y < 0);

assign z = (sub==1) ? x-y : x+y;

endmodule

Sample “Assign” statements

1-4.30

Understanding Simulation Timing

• When expressing parallelism, an understanding of 

how time works is crucial

• Even though ‘always’ and ‘assign’ statements specify 

operations to be run in parallel, simulator tools run 

on traditional computers that can only execute 

sequential operations

• To maintain the appearance of parallelism, the 

simulator keeps track of events in a sorted event 

queue and updates signal values at appropriate 

times, triggering more statements to be executed

1-4.31

Explicit Time Delays

• In testbenches, explicit 

delays can be specified 

using ‘# delay’

– When this is done, the RHS of 

the expression is evaluated at 

time t but the LHS is not 

updated until t+delay

module m1_tb;

reg a,b,c;

wire  w,x,y,z;

initial begin

a = 1;

#5  // delay 5 ns (ns=default)

a = 0;

b = 0;

#2  // delay 2 more ns

a = 1;

endmodule

Time Event

0 ns a = 1

5 ns a = 0

5 ns b = 0

7 ns a = 1

Simulator Event Queue

1-4.32

Explicit Time Delays

• Assignments to the same 

signal without an 

intervening delay will cause 

only the last assignment to 

be seen

module m1_tb;

reg a,b,c;

wire  w,x,y,z;

initial begin

a = 1;

#5  // delay 5 ns (ns=default)

a = 0;

a = 1;

endmodule

Time Event

0 ns a = 1

5 ns a = 0→1Simulator Event Queue



1-4.33

Implicit Time Delays

• Normal behavioral descriptions don’t 

model propagation delay until the 

code is synthesized

• To operate correctly the simulators 

event queue must have some notion 

of what happens first, second, third, 

etc.

• Delta (δ) time is used

– Delta times are purely for ordering 

events and all occur in “0 time”

– The first event(s) occur at time 0 ns

– Next event(s) occur at time 0 + δ

– Next event(s) occur at time 0 + 2δ

always @(a,b,c,w,x,y) 

begin

w <= a ^ b;

x <= b | c;

y <= w & x;

z <= ~y;  

end

Time Event Triggers

0 ns a,b,c = 0,0,1 w and x assigns

0 + δ w=0, x=1 y assign

0 + 2δ y = 0 z assign

0 + 3δ z = 1 Anything 

sensitive to z

Simulator Event Queue

assign w = a ^ b;

assign x = b | c;

assign y = w & x;

assign z = ~y;

Equivalent 
Implementations

1-4.34

TESTBENCHES

1-4.35

Testbenches

• Generate input stimulus (values) to 
your design over time

• Simulator will run the inputs through 
the circuit you described and find 
what the output from your circuit 
would be

• Designer checks whether the output 
is as expected, given the input 
sequence

• Testbenches consist of code to 
generate the inputs as well as 
instantiating the design/unit under 
test and possibly automatically 
checking the results

Testbench Module

Unit Under Test (UUT)

(Your design module)

Code to generate 

input stimulus

Inputs Outputs

1-4.36

Testbench Modules

• Declared as a module 

just like the design 

circuit

• No inputs or outputs

module my_tb;

// testbench code

endmodule



1-4.37

Testbench Signals

• Declare signals in the 
testbench for the inputs and 
outputs of the design under 
test

– inputs to your design should 
be declared type ‘reg’ in the 
testbench (since you are 
driving them and their value 
should be retained until you 
change them)

– outputs from your design 
should be declared type ‘wire’ 
since your design is driving 
them

module my_tb;

reg   x,y,z;

wire  f,g;

endmodule

module m1(x,y,z,f,g);

input  x,y,z;

output f,g;

...

Unit Under Test

Testbench

1-4.38

UUT Instantiation

• Instantiate your design module 

as a component (just like you 

instantiate a gate in you design)

• Pass the input and output 

signals to the ports of the 

design

• For designs with more than 4 or 

5 ports, use named mapping 

rather than positional mapping

module my_tb;

reg   x,y,z;

wire  f,g;

m1 uut(x,y,z,f,g);

/* m1 uut(.x(x), .y(y),

.z(z), .f(f),

.g(g));

*/

endmodule

module m1(x,y,z,f,g);

input  x,y,z;

output f,g;

...

endmodule

Unit Under Test

Testbench

1-4.39

Generating Input Stimulus (Values)

• Now use Verilog code 

to generate the input 

values over a period of 

time

module my_tb;

reg   x,y,z;

wire  f,g;

m1 uut(x,y,z,f,g);

/* m1 uut(.x(x), .y(y),

.z(z), .f(f),

.g(g));

*/

endmodule

module m1(x,y,z,f,g);

input  x,y,z;

output f,g;

...

endmodule

Unit Under Test

Testbench

1-4.40

Initial Block Statement

• Tells the simulator to run this 
code just once (vs. always block 
that runs on changes in 
sensitivity list signals)

• Inside the “initial” block we can 
write code to generate values 
on the inputs to our design

• Use “begin…end” to bracket the 
code (similar to { .. } in C or 
Java)

module my_tb;

reg   x,y,z;

wire  f,g;

m1 uut(x,y,z,f,g); 

initial

begin

// input stimulus

// code

end

endmodule

Testbench



1-4.41

Assignment Statement

• Use ‘=‘ to assign a 

signal a value

– Can assign constants

• x = 0;   y = 1;

– Can assign logical 

relationships

• x = ~x      // x = not x

• x = y & z  // x = y and z

module my_tb;

reg   x,y,z;

wire  f,g;

m1 uut(x,y,z,f,g); 

initial

begin

x = 0;

end

endmodule

Testbench

1-4.42

Aggregate Assignment Statement

• Can assign multiple signals at 
once

• Place signals in brackets 
(i.e. {  }) and separate with 
commas

• Multiple bit constants can be 
written in the form:

• num_bits ’{b,o,d,h} value

– 4’b0000     // 4-bits binary

– 6’b101101 // 6-bits binary

– 8’hFF         // 8-bits in hex 

– Decimal is default

– 17              // 17 decimal

module my_tb;

reg   x,y,z;

wire  f,g;

m1 uut(x,y,z,f,g); 

initial

begin

{x,y,z} = 3’b000;

end

endmodule

Testbench

1-4.43

Time

• We must explicitly 
indicate when and how 
much time should pass 
between assignments

• Statement (‘#’ indicates a 
time delay):

– # 10;     // wait 10 ns;

– # 50;     // wait 50 ns;

• Default timescale is 
nanoseconds (ns)

module my_tb;

reg   x,y,z;

wire  f,g;

m1 dut(x,y,z,f,g); 

initial

begin

{x,y,z} = 3’b000;

#10;

{x,y,z} = 3’b001;

#25;

end

endmodule

Testbench

1-4.44

Integer Signal Type

• To model a collection of bits 
representing a number, declare 
signals as type ‘integer’

• Assigning an integer to a bit or 
group of bits will cause them to 
get the binary equivalent 

• Assigning an integer value too 
large for the number of bits will 
cause just the LSB’s of the 
number to be assigned

– Assigning 810=10002 to a 3-bit value 
will cause the 3-bit value to be 000 
(i.e. the 3 LSB’s of 1000)

module my_tb;

reg     w,x,y,z;

integer num;

initial 

begin

num = 15;    

{w,x,y,z} = num;

// assigns

// w,x,y,z = 1111

#10;

num = num+1;

// num = 16

{w,x,y,z} = num;

// w,x,y,z = 0000

end

endmodule

Testbench



1-4.45

For loop

• Integers can also be used 
as program control 
variables

• Verilog supports ‘for’ 
loops to repeatedly 
execute a statement

• Format:

– for(initial_condition; 
end_condition; increment 
statement)

module my_tb;

reg     a,b;

integer i;

initial 

begin

for(i=0;i<4;i=i+1)

begin

{a,b} = i;        

end   

end

endmodule

Here, ‘i’ acts as a counter for a loop.  
Each time through the loop, i is 

incremented and then the decimal value 
is converted to binary and assigned to a 

and b

You can’t do 
“i++” as in 

C/C++ or Java

a,b = 00, 
then 01, 
then 10, 
then 11

1-4.46

For loop

• Question:  How much time 
passes between 
assignments to {a,b}

• Answer:  0 time…in fact if 
you look at a waveform, 
{a,b} will just be equal to 
1,1…you’ll never see any 
other combinations

• We must explicitly insert 
time delays!

module my_tb;

reg     a,b;

integer i;

initial 

begin

for(i=0;i<4;i=i+1)

begin

{a,b} = i;

#10;

end

end

endmodule

Now, 10 nanoseconds will pass before 
we start the next iteration of the loop

1-4.47

Generating Sequential Stimulus

• Clock Generation

– Initialize in an initial block

– Continue toggling via an always 
process

• Reset generation

– Activate in initial block

– Deactivate after some period of 
time

– Can wait for each clock edge via 
@(posedge clk)

module my_tb;

reg     clk, rst, s;

always #5 clk = ~clk;

initial begin

clk = 1; rst = 1; s=0;

// wait 2 clocks

@(posedge clk);

@(posedge clk);

rst = 0;

s=1;

@(posedge clk);

s=0;

end

endmodule

Generated stimulus

CLK

RST

S


