
1-2.1

Spiral 1 / Unit 2

Basic Boolean Algebra

Logic Functions

Decoders

Multiplexers

1-2.2

Outcomes

• I know the difference between combinational and sequential

logic and can name examples of each.

• I understand latency, throughput, and at least 1 technique to

improve throughput

• I can identify when I need state vs. a purely combinational

function

– I can convert a simple word problem to a logic function (TT or canonical

form) or state diagram

• I can use Karnaugh maps to synthesize combinational functions

with several outputs

• I understand how a register with an enable functions & is built

• I can design a working state machine given a state diagram

• I can implement small logic functions with complex CMOS gates

1-2.3

BOOLEAN ALGEBRA INTRO

1-2.4

Boolean Algebra

• A set of theorems to help us manipulate

logical expressions/equations

• Axioms = Basis / assumptions used

• Theorems = manipulations that we can use

1-2.5

Axioms

• Axioms are the basis for Boolean Algebra

• Notice that these axioms are simply restating our definition of
digital/binary logic

– A1/A1’ = Binary variables (only 2 values possible)

– A2/A2’ = NOT operation

– A3,A4,A5 = AND operation

– A3’,A4’,A5’ = OR operation

(A1) X = 0 if X ≠ 1 (A1’) X = 1 if X ≠ 0

(A2) If X = 0, then X’ = 1 (A2’) If X = 1, then X’ = 0

(A3) 0 • 0 = 0 (A3’) 1 + 1 = 1

(A4) 1 • 1 = 1 (A4’) 0 + 0 = 0

(A5) 1 • 0 = 0 • 1 = 0 (A5’) 0 + 1 = 1 + 0 = 1

1-2.6

Duality

• Every truth statement can yields another truth
statement

– I exercise if I have time and energy (original statement)

– I don’t exercise if I don’t have time or don’t have energy (dual

statement)

• To express the dual, swap…

__

__

1-2.7

Duality

• The “dual” of an expression is not equal to the

original

• Taking the “dual” of both sides of an equation yields a new

equation

1 + 0 0 • 1

Original

expression

Dual
≠

X + 1 = 1

Original equation Dual

X • 0 = 0

1-2.8

Single Variable Theorems

• Provide some simplifications for expressions containing:

– a single variable

– a single variable and a constant bit

• Each theorem has a dual (another true statement)

• Each theorem can be proved by writing a truth table for both

sides (i.e. proving the theorem holds for all possible values of X)

T1 X + 0 = X T1' X • 1 = X

T2 X + 1 = 1 T2' X • 0 = 0

T3 X + X = X T3' X • X = X

T4 (X')' = X

T5 X + X' = 1 T5' X • X' = 0

1-2.9

Single Variable Theorem (T1)

X+0 = X (T1) X•1 = X (T1’)

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

OR AND

Whenever a variable is OR’ed with 0,
the output will be the same as the

variable…

“0 OR Anything equals that

anything”

Whenever a variable is AND’ed with
1, the output will be the same as the

variable…

“1 AND Anything equals that

anything”

Hold Y
constant

1-2.10

Single Variable Theorem (T2)

X+1 = 1 (T2) X•0 = 0 (T2’)

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

OR AND

Whenever a variable is OR’ed with 1,
the output will be 1…

“1 OR anything equals 1”

Whenever a variable is AND’ed with
0, the output will be 0…

“0 AND anything equals 0”

Hold Y
constant

1-2.11

Single Variable Theorem (T3)

X+X = X (T3) X•X = X (T3’)

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

OR AND

Whenever a variable is OR’ed with
itself, the result is just the value of the

variable

Whenever a variable is AND’ed with
itself, the result is just the value of the

variable

This theorem can be used to reduce two identical terms into one

OR to replicate one term into two.

1-2.12

Single Variable Theorem (T4)

(X’)’ = X (T4)

Anything inverted twice yields its original value

(X) = X (T4)

0 1 0

1-2.13

Single Variable Theorem (T5)

X+X = 1 (T5) X•X = 0 (T5’)

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

OR AND

Whenever a variable is OR’ed with its
complement, one value has to be 1

and thus the result is 1

This theorem can be used to simplify variables into a constant or to

expand a constant into a variable.

Whenever a variable is AND’ed with
its complement, one value has to be

0 and thus the result is 0

1-2.14

Application: Channel Selector

• Given 4 input, digital music/sound channels and
4 output channels

• Given individual “select” inputs that select 1 input
channel to be routed to 1 output channel

Channel
Selector

ICH0

ICH1

ICH2

ICH3

OCH0

OCH1

OCH2

OCH3

IS
E

L
0

IS
E

L
1

IS
E

L
2

IS
E

L
3

O
S

E
L

0

O
S

E
L

1

O
S

E
L

2

O
S

E
L

3

4 Input channels

4 Output
channels

Input
Channel
Select

Output
Channel
Select

011010101001101

101010110101010

101001010101111

001010101001011

1-2.15

Application: Steering Logic

• 4-input music channels (ICHx)

– Select one input channel (use ISELx inputs)

– Route to one output channel (use OSELx inputs)

011010101001101

101010110101010

101001010101111

001010101001011

ICH 0

ICH 1

ICH 2

ICH 3

IS
E

L
0

IS
E

L
1

IS
E

L
2

IS
E

L
3

O
S

E
L
0

O
S

E
L

1

O
S

E
L

2

O
S

E
L

3

OCH 0

OCH 1

OCH 2

OCH 3

1-2.16

Application: Steering Logic

• 1st Level of AND gates act as barriers only passing 1 channel

• OR gates combines 3 streams of 0’s with the 1 channel that got passed (i.e.
ICH1)

• 2nd Level of AND gates passes the channel to only the selected output

ICH 0

ICH 1

ICH 2

ICH 3

IS
E

L
0

I S
E

L
1

I S
E

L
2

I S
E

L
3

O
S

E
L
0

O
S

E
L

1

O
S

E
L

2

O
S

E
L

3

OCH 0

OCH 1

OCH 2

OCH 3

0 0 0 1

0

0

0

1

0

0

0

ICH1

ICH1

1

0

0

0

ICH1

ICH1

ICH1

ICH1 ICH1

0

0

0

0 1 0 0 OR:
0 + ICH1 + 0 + 0
= ICH1

AND:
1 AND ICH1 = ICH1
0 AND ICH1 = 0

AND:
1 AND ICHx = ICHx
0 AND ICHx = 0

Connection

Point

1-2.17

Your Turn

• Build a circuit that takes 3 inputs: S, IN0, IN1

and outputs a single bit Y.

• It’s functions should be:

– If S = 0, Y = IN0 (IN0 passes to Y)

– If S = 1, Y = IN1 (IN1 passes to Y)

IN0

S

IN1

Y

1-2.18

CHECKERS / DECODERS

1-2.19

Gates

• Gates can have more than 2 inputs but the functions stay
the same

– AND = output = 1 if ALL inputs are 1

• Outputs 1 for only 1 input combination

– OR = output = 1 if ANY input is 1

• Outputs 0 for only 1 input combination

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

X Y Z F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

3-input AND 3-input OR

F
x

y

z

F
x

y

z

1-2.20

Checkers / Decoders

• An AND gate only outputs ‘1’ for 1 combination

– That combination can be changed by adding inverters to the inputs

– We can think of the AND gate as “checking” or “decoding” a specific
combination and outputting a ‘1’ when it matches.

X Y Z F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

F
x

y

z

X Y Z F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

F
x

y

z

AND gate decoding
(checking for)

combination 101

AND gate decoding
(checking for)

combination 000

1-2.21

Checkers / Decoders

• Place inverters at the input of the AND gates such
that
– F produces ‘1’ only for input combination {x,y,z} = {010}

– G produces ‘1’ only for input combination {x,y,z} = {110}

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

F
x

y

z

X Y Z G

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

G
x

y

z

AND gate decoding
(checking for)

combination 010

AND gate decoding

(checking for)
combination 110

1-2.22

Checkers / Decoders

• An OR gate only outputs ‘0’ for 1 combination

– That combination can be changed by adding inverters to the inputs

Add inverters to
create an OR gate

decoding
(checking for)

combination 010

X Y Z F

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

F
x

y

z

Add inverters to
create an OR gate

decoding
(checking for)

combination 110

X Y Z F

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

F
x

y

z

1-2.23

Decoder Exercise
• Design an instruction

decoder that uses

opcode[5:0] and func[5:0]

as inputs and produces a

separate output {ADD, SRL,

SUB, etc.} for each

instruction type that will

produce '1' when that

instruction is loaded

000000 01000

opcode rs

10001

rt

00101

rd

00111

shamt

100000

func

001000 11000

opcode rs

00101

rt

ADDI $24 $5

0000 0000 0000 0001

immediate

20

100011 00011 00101

LW $3 $5

1111 1111 1111 1000

-8

101011 00011 00101

SW $3 $5

1111 1111 1111 1000

-8

000100 00011 00101

BEQ $3 $5

1111 1111 1111 1000

-8

000010 Jump address

J 26-bits

opcode Jump address

ADD $8 $17 $5 00000

000000 01000 10001 00101 00111 000010

SRL $8 $17 $5 7

000000 01000 10001 00101 00111 100010

SUB $8 $17 $5 7

R
-T

yp
e

I-
T
yp

e
J
-T

yp
e

1-2.24

Decoder Exercise

000000 01000

opcode rs

10001

rt

00101

rd

00111

shamt

100000

func

001000 11000

opcode rs

00101

rt

ADDI $24 $5

0000 0000 0000 0001

immediate

20

100011 00011 00101

LW $3 $5

1111 1111 1111 1000

-8

101011 00011 00101

SW $3 $5

1111 1111 1111 1000

-8

000100 00011 00101

BEQ $3 $5

1111 1111 1111 1000

-8

000010 Jump address

J 26-bits

opcode Jump address

ADD $8 $17 $5 00000

000000 01000 10001 00101 00111 000010

SRL $8 $17 $5 7

000000 01000 10001 00101 00111 100010

SUB $8 $17 $5 7

R
-T

yp
e

I-
T
yp

e
J
-T

yp
e

ADD

SRL

SUB

1-2.25

Decoder Exercise

000000 01000

opcode rs

10001

rt

00101

rd

00111

shamt

100000

func

001000 11000

opcode rs

00101

rt

ADDI $24 $5

0000 0000 0000 0001

immediate

20

100011 00011 00101

LW $3 $5

1111 1111 1111 1000

-8

101011 00011 00101

SW $3 $5

1111 1111 1111 1000

-8

000100 00011 00101

BEQ $3 $5

1111 1111 1111 1000

-8

000010 Jump address

J 26-bits

opcode Jump address

ADD $8 $17 $5 00000

000000 01000 10001 00101 00111 000010

SRL $8 $17 $5 7

000000 01000 10001 00101 00111 100010

SUB $8 $17 $5 7

R
-T

yp
e

I-
T
yp

e
J
-T

yp
e

ADDI

LW

SW

1-2.26

Single-Cycle CPU

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

A
L

U Res.

Zero

0

1

Sh.
Left
2

+

D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

0

1

RegDst

ALUSrc

5

MemtoReg

MemWrite

MemRead

ALU control

PCSrc

RegWrite

ALUSrc
RegDst

MemtoReg

Branch

MemRead & MemWrite

ALUOp[1:0]

ALUOp[1:0]

INST[5:0]

[3
1
:2

6
]

[25:21]

[20:16]

[15:11]

[1
5
:0

]

1

0

Sh.
Left 2

[2
5
:0

]

26 28

Jump
Jump

32

Jump Address = {NewPC[31:28], INST[25:0],00}

Branch Address

Next Instruc. Address

Control

26

1-2.27

Full Decoders

• A full decoder is a building block that:

– Takes in an n-bit binary number as input

– Decodes that binary number and activates the corresponding output

– Individual outputs for EVERY (MOST) input combination (i.e. 2n

outputs)

1 output for each
combination of the
input number

3-bit binary
number

3-to-8 Decoder

1-2.28

Decoders

• A decoder is a building block that:

– Takes a binary number as input

– Decodes that binary number and activates the corresponding output

– Put in 6=110, Output 6 activates (‘1’)

– Put in 5=101, Output 5 activates (‘1’)

0
1
1

0

0

0

0

0

0

1

0
Binary #6

Only that
numbered output is
activated

1-2.29

Decoders

• A decoder is a building block that:

– Takes a binary number as input

– Decodes that binary number and activates the corresponding output

– Put in 6=110, Output 6 activates (‘1’)

– Put in 5=101, Output 5 activates (‘1’)

1
0
1

0

0

0

0

0

1

0

0
Binary #5

Only that
numbered output is
activated

1-2.30

Decoder Sizes

• A decoder w/ an n-bit input has 2n outputs

– 1 output for every combination of the n-bit input

Y

X

D0

D1

D2

D3

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A2

A1

A0

2-to-4
Decoder

3-to-8
Decoder

0

1 1
0
0

0

n inputs
(2)

2n outputs
(4)

n inputs
(3)

2n outputs
(8)

0
0
0

1

0

0
0

0
0

0
0

(MSB) (MSB)

1-2.31

Exercise

• Complete the design of a 2-to-4 decoder

D0

D1

D2

D3

1-2.32

Building Decoders

Checker
for 000

Checker
for 001

Checker
for 010

Checker
for 011

Checker
for 100

Checker
for 101

Checker
for 110

Checker
for 111

3-bit
number
[A2:A0]

O0

O1

O2

O3

O4

O5

O6

O7

1-2.33

Enables

• Exactly one output is active at all times

• It may be undesirable to always have an active output

• Add an extra input (called an enable) that can independently

force all the outputs to their inactive values

2-to-4 Decoder

1

0

0

1

0

0

One output
will always
be active

Will force all outputs
to 0 when E = 0

(i.e. not enabled)

1-2.34

Enables

1

0

0

0

0

0

0

When E=0,
inputs is
ignored

1

0

0

1

0

0

1

Since E=1,
outputs will
function normally

Since E=0,
all outputs = 0

When E=1,
inputs will cause the
appropriate output to

go active

1-2.35

Implementing Enables

• Original 2-to-4 decoder

B

A

D0

D1

D2

D3

E

When E=0, force all outputs = 0

When E=1, outputs operate as they did originally

A’ A B’ B

1-2.36

Enables

• Enables can be implemented by connecting it to

each AND gate of the decoder

B

A

D0

D1

D2

D3

E

When E=0, 0 AND anything = 0

When E=1, 1 AND anything = that anything, which was the normal
decoding logic

A’ A B’ B

1-2.37

Multiplexers

• Along with adders, multiplexers are most used building block

• n data inputs, log2n select bits, 1 output

• A multiplexer (“mux” for short) selects one data input and
passes it to the output

4-to-1 Mux

n data inputs

log2n select
bits

1 output

i0

i1

i2

i3

y

s

1-2.38

Multiplexers

A[31:0]

Thus, input 2 =
C[31:0] is selected
and passed to the

output

Select bits = 102 = 210.
1

2

4-to-1 Mux

i0

i1

i2

i3

y

s

B[31:0]

C[31:0]

D[31:0]

C[31:0]

1-2.39

Multiplexers

A[31:0]

Thus, input 0 =
A[31:0] is selected
and passed to the

output

Select bits = 002 = 010.
1

2

4-to-1 Mux

i0

i1

i2

i3

y

s

B[31:0]

C[31:0]

D[31:0]

A[31:0]

1-2.40

Multiplexers

A[31:0]

Thus, input 1 =
B[31:0] is selected
and passed to the

output

Select bits = 12 = 110.
1

2

2-to-1 Mux

i0

i1

y

s

B[31:0]

B[31:0]

1-2.41

Recall Using T1/T2

• 1st Level of AND gates act as barriers only passing 1 channel

• OR gates combines 3 streams of 0’s with the 1 channel that got passed (i.e.
ICH1)

• 2nd Level of AND gates passes the channel to only the selected output

ICH 0

ICH 1

ICH 2

ICH 3

IS
E

L
0

I S
E

L
1

I S
E

L
2

I S
E

L
3

O
S

E
L
0

O
S

E
L

1

O
S

E
L

2

O
S

E
L

3

OCH 0

OCH 1

OCH 2

OCH 3

0 0 0 1

0

0

0

1

0

0

0

ICH1

ICH1

1

0

0

0

ICH1

ICH1

ICH1

ICH1 ICH1

0

0

0

0 1 0 0 OR:
0 + ICH1 + 0 + 0
= ICH1

AND:
1 AND ICH1 = ICH1
0 AND ICH1 = 0

AND:
1 AND ICHx = ICHx
0 AND ICHx = 0

Connection

Point
Essentially this logic

forms a 4-to-1 mux
where one level of

gates blocks all but 1
and then the OR gate
combines all signals

1-2.42

Exercise: Build a 4-to-1 mux

• Complete the 4-to-1

mux to the right by

drawing wires

between the 2-to-4

decode and the AND

gates

S1

S0

S1S0=00

S1S0=01

S1S0=10

S1S0=11

Y

AND Gates acting as
barrier gates

Final OR gate takes 3
zero’s and one selected

input

2-to-4 Decoder

I0

I1

I2

I3

1-2.43

Building a Mux

• To build a mux

– Decode the select bits and include the corresponding data
input.

– Finally OR all the first level outputs together.

1

1

1
0

0

0

0
1

I1 I0

1-2.44

Building a Mux

• To build a mux

– Decode the select bits and include the corresponding data
input.

– Finally OR all the first level outputs together.

S1S0 = 012

1

0

1

0

1

0

1

0

I
0

I1

I2

I3

S
1

S
0

Y

S
1

S
0

S
1

S
0

S
1

S
0

I1

0

0

0

I1

I1
1
1

1-2.45

Building a Mux

• To build a mux

– Decode the select bits and include the corresponding data
input.

– Finally OR all the first level outputs together.

S1S0 = 112

1

1

1

1

1

1

1

g1

I
0

I1

I2

I3

S
1

S
0

Y

S
1

S
0

S
1

S
0

S
1

S
0

0

0

0

I3

I3

I3
1
1

1-2.46

Building Wide Muxes

• So far muxes only have

single bit inputs…

– I0 is only 1-bit

– I1 is only 1-bit

• What if we still want to

select between 2 inputs

but now each input is a 4-

bit number

• Use a 4-bit wide 2-to-1

mux I1

I0

S

Y

I0

I1

Y

S

Pass all 4 bits
of I0 or I1

When we select I0
or I1 we want all

4-bits of that
input to be

passed

1-bit wide 2-to-1
mux

4-bit wide 2-to-1
mux

A

B

1-2.47

Building Wide Muxes

• To build a 4-bit wide 2-to-1
mux, use 4 separate 2-to-1
muxes

• When S=0, all muxes pass
their I0 inputs which means all
the A bits get through

• When S=1, all muxes pass
their I1 inputs which means all
the B bits get through

• In general, to build an m-bit
wide n-to-1 mux, use m
individual (separate) n-to-1
muxes

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

B0

A0

A1

A2

A3

B1

B2

B3

S

Y0

Y1

Y2

Y3

1-2.48

Building Wide Muxes

• To build a 4-bit wide 2-to-1
mux, use 4 separate 2-to-1
muxes

• When S=0, all muxes pass
their I0 inputs which means all
the A bits get through

• When S=1, all muxes pass
their I1 inputs which means all
the B bits get through

• In general, to build an m-bit
wide n-to-1 mux, use m
individual (separate) n-to-1
muxes

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

B0

A0

A1

A2

A3

B1

B2

B3

S

Y0

Y1

Y2

Y3

A0

B0

A1

B1

A2

B2

A3

B3

1-2.49

Exercise

• How many 1-bit wide

muxes and of what size

would you need to build

a 4-to-1, 8-bit wide mux

(i.e. there are 4 numbers:

W[7:0], X[7:0], Y[7:0] and

Z[7:0] and you must

select one)

• How many 1-bit wide

muxes and of what size

would you need to build

a 8-to-1, 2-bit wide mux?

1-2.50

Single-Cycle CPU

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

A
L

U Res.

Zero

0

1

Sh.
Left
2

+

D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

0

1

RegDst

ALUSrc

5

MemtoReg

MemWrite

MemRead

ALU control

PCSrc

RegWrite

ALUSrc
RegDst

MemtoReg

Branch

MemRead & MemWrite

ALUOp[1:0]

ALUOp[1:0]

INST[5:0]

[3
1
:2

6
]

[25:21]

[20:16]

[15:11]

[1
5
:0

]

1

0

Sh.
Left 2

[2
5
:0

]

26 28

Jump
Jump

32

Jump Address = {NewPC[31:28], INST[25:0],00}

Branch Address

Next Instruc. Address

Control

1-2.51

Building Large Muxes

• Similar to a tournament of sports teams

– Many teams enter and then are narrowed down

to 1 winner

– In each round winners play winners

1-2.52

Design an 8-to-1 mux with

2-to-1 Muxes

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

S__ S__ S__

Y

I0

I1

I2

I3

I4

I5

I6

I7

1-2.53

Cascading Muxes

• Use several small muxes to build large ones

• Rules

1. Arrange the muxes in stages (based on necessary number

of inputs in 1st stage)

2. Outputs of 1 stage feed to inputs of the next

3. All muxes in a stage connect to the same group of select

bits

– Usually, LSB connects to first stage

– MSB connect to last stage

1-2.54

Building a 4-to-1 Mux

I1

Y

S

I
0

I1

Y

S

I0

I1

Y

S

I0

Stage 1 Stage 2

S1

S0

S0
Y

D0

D1

D2

D3

S1S0
4-to-1 mux built

w/ 2-to-1 muxes

Rule 1: Outputs from stage 1
connect to inputs of stage 2

Rule 2: LSB S0 connect to all muxes
in first stage. MSB S1 connects to all
muxes in second stage

1-2.55

Building a 4-to-1 Mux

I1

Y

S

I
0

I1

Y

S

I0

I1

Y

S

I0

Stage 1 Stage 2

S1

S0

S0
Y

D0

D1

D2

D3

S1S0

S1 S0 Y

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Walk through an

example:

S1S0 = 01

1 0

1-2.56

Building a 4-to-1 Mux

I1

Y

S

I
0

I1

Y

S

I0

I1

Y

S

I0

Stage 1 Stage 2

S1

1

1 Y

D0

D1

D2

D3

S1S0

S1 S0 Y

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Walk through an

example:

S1S0 = 01

1 0

S0 = 1 narrows our

choices down to D1

and D3

D1

D3

1-2.57

Building a 4-to-1 Mux

I1

Y

S

I
0

I1

Y

S

I0

I1

Y

S

I0

Stage 1 Stage 2

0

1

1 D1

D0

D1

D2

D3

S1S0

S1 S0 Y

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Walk through an

example:

S1S0 = 01

1 0

S1 = 0 selects our final

choice, D1

D1

D3

1-2.58

Exercise

• Create a 3-to-1 mux using 2-to-1 muxes

– Inputs: I0, I1, I2 and select bits S1,S0

– Output: Y

