
1-1.1

Spiral 1 / Unit 1

Combinational vs. Sequential Logic

Latency vs. Throughput (Pipelining)

Digital Design Goals

Logic Functions

1-1.2

Spiral Theory
Combinational 

Design

Sequential

Design

System Level 

Design

Implementation 

and Tools
Project

1 • Performance 

metrics (latency 

vs. throughput)

• Boolean Algebra 

• Canonical 

Representations

• Decoders and 

muxes

• Synthesis with 

min/maxterms

• Synthesis with 

Karnaugh Maps

• Edge-triggered 

flip-flops

• Registers (with 

enables)

• Encoded State

machine design

• Structural Verilog 

HDL

• CMOS gate 

implementation

• Fabrication 

process

2
• Shannon's 

Theorem

• Synthesis with 

muxes & 

memory

• Adder and 

comparator 

design

• Bistables, 

latches, and Flip-

flops

• Counters

• Memories

• One-hot state 

machine design

• Control and 

datapath

decomposition

• MOS Theory 

• Capacitance, 

delay and sizing

• Memory 

constructs

3 • HW/SW 

partitioning

• Bus interfacing

• Single-cycle CPU

• Power and other 

logic families

• EDA design 

process

Spiral Content Mapping

1-1.3

Outcomes

• I know the difference between combinational and sequential 

logic and can name examples of each.

• I understand latency, throughput, and at least 1 technique to 

improve throughput

• I can identify when I need state vs. a purely combinational 

function

– I can convert a simple word problem to a logic function (TT or canonical 

form) or state diagram

• I can use Karnaugh maps to synthesize combinational functions 

with several outputs

• I understand how a register with an enable functions & is built

• I can design a working state machine given a state diagram

• I can implement small logic functions with complex CMOS gates

1-1.4

COMBINATIONAL VS. SEQUENTIAL



1-1.5

Combinational vs. Sequential Logic

• All logic is categorized into 2 groups

– Combinational logic: 

• Outputs = f(__________________)

– Sequential Logic

• Outputs = f(____________________________)

• Sequential logic has the notion of “____________” 

(remembering inputs or events that happened in the 

past)

1-1.6

Combinational vs. Sequential

Outputs depend only on current 

outputs

Outputs depend on current inputs 

and previous inputs (previous 

inputs summarized via state)

Current inputs Outputs

Current

inputs
Outputs

1 0 1

Sequential 

Outputs (State) 

feedback as 

inputs

Sequential 

Inputs 

(Next State)

Combinational 
Logic

Combinational 
Logic

Sequential Logic

1-1.7

Combinational Example: Staircase Light 

Switch

Whether or not the light is 
on is only dependent on 

the current position of the 
switches

S1

S2

Light

Logic 

Circuit
Light

S1

S2

S1 S2 Light

0 0

0 1

1 0

1 1

1-1.8

Water Tank Problem

• Build a control system for a pump to keep the 

tank from going empty

Sensor

Low 

Sensor

Pump Pump

High 

Sensor



1-1.9

Combinational Logic

• With combinational logic the outputs only 

depend on what the inputs are ___________

7

4

3

It doesn’t matter what the inputs were ____________

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

‘283+

1-1.10

Logic Functions

• Map input combinations of n-bits to desired 

m-bit output

• Can describe function with a _____________ 

and then find its circuit implementation

Logic 

Circuit
OutputsInputs

IN0 IN1 IN2 OUT0 OUT1

0 0 0 0 1

0 0 1 1 1

…

1 1 1 0 0

1-1.11

Logic Example

?0

0

1

0

1-1.12

Sequential Example: Remote 

Control

3 *10 30

32+

Time 1 Time 2

2

The channel is a ______-dependent

function of the first button pressed 

and the second (we must remember 

the 3 and then use it with the 2)

Inputting 

channel 32



1-1.13

Registers

• Registers are the most common sequential 

device

• Registers sample the data input (D) on the 

edge of a clock pulse (CP) and stores that 

value at the output (Q)

• Analogy:  Taking a picture with your digital 

camera…when you press a button (clock 

pulse) the camera samples the scene 

(input) and ________________ it as a 

snapshot (output) until the next trigger

Block Diagram of 
a Register

The clock pulse 
(positive edge) 

here…

…causes q(t) to 
sample and hold 
the current d(t) 

value

1-1.14

Flip-Flops

• Flip-flops are the building blocks of registers

– 1 Flip-flop PER bit of input/output

– There are many kinds of flip-flops but the most common is the 

D- (Data) Flip-flop (a.k.a. D-FF)

• D Flip-flop triggers on the clock edge and captures the D-value at 

that instant and causes Q to remember it until the next edge

– Positive Edge: instant the clock transition from low to high (0 to 1)

Positive-Edge Triggered 
D-FF

D Q

CLK

D-FF
Clock Signal

d(t) q(t)

1-1.15

Registers and Flip-flops

• A register is simply a group 

of D flip-flops that all 

trigger on a single clock 

pulse 

D Q

D Q

D Q

D Q

CP

D3

D2

D1

D0

Q3

Q2

Q1

Q0

D-FF

D-FF

D-FF

D-FF

4-bit Register

CLK Qt+1

Qt

Qt

Dt

Steady level of 0 
or 1

Positive Edge

1-1.16

Pulses and Clocks

• Registers need an edge to trigger

• We can generate pulses at specific times 

(creating an irregular pattern) when we know 

the data we want has arrived

• Other registers in our hardware should trigger at 

a regular interval

• For that we use a clock signal…

– Alternating high/low voltage pulse train

– Controls the ordering and timing of operations 

performed in the processor

– 1 cycle is usually measured from rising/positive 

edge to rising/positive edge

• Clock frequency (F) = # of cycles per second

• Clock Period (T) = 1 / Freq.

Processor

Clock Signal

0 (0V)

1 (5V)

1 cycle

2.8 GHz 
= 2.8*109 cycles per second

= 0.357 ns/cycle

Op. 1 Op. 2 Op. 3

Clock Pulses



1-1.17

Summary

• Combinational logic

– Perform a specific function (mapping of 2n input 

combinations to desired output combinations)

– No internal state or feedback

• Given a set of inputs, we will always get the same output after 

some time (propagation) delay

• Sequential logic (“Storage” devices)

– Registers made up of flip-flops/latches are the 

fundamental building blocks

• Controlled by a “clock” signal

• Sample data on a “clock” edge and remember that value until the 

next edge

1-1.18

Combinational vs. Sequential

• Sequential logic (i.e. registers) is used to store 

values ("storage devices")

– A register in HW is analogous to a _________ in 

SW (a variable or register stores a value until 

needed at a later time)

• Combinational logic is used to process bits (i.e. 

perform operations on values

– Combinational logic in HW is analogous to 

____________ (______________) in SW

1-1.19

THROUGHPUT & LATENCY

1-1.20

Performance Depends on View Point?!

• What's faster:  

– A 747 Jumbo Airliner

– An F-22 fighter jet

• If you are an individual interested in getting from 

point A to point B, then the _________

– This is known as ____________ [units of _______]

– Time from the start of an operation until it completes

• If you are trying to __________ a large number of 

people, the _______ looks much better

– This is known as _____________ [units of ____________]



1-1.21

Throughput vs. Latency

• If Latency is the Time it takes to perform 1 Job to complete and 

Throughput = Jobs / Time…

• …Is Throughput = 1 / Latency?

• _________! 

– Latency is from the perspective of a ____________

– Throughput is from the perspective of ___________________

– Parallelism is the great friend of throughput!

• We will see many times in this course some strategies for 

improving throughput and sometimes latency

1-1.22

Clocking Methodologies

• Typical designs use both combinational and sequential logic 

– Sequential logic: saves and synchronize data

– Combinational logic:  performs some operation on the data

• Can use feed-forward or feed-back methodology

• Clock cycle must be set for the ___________ between registers

R
e
g
is

te
r

Feed-back Style Feed-forward Style 

Combo
Logic

Combo
Logic

S
e
q

u
e
n
ti
a
l 
L
o
g
ic

S
e
q

u
e
n
ti
a
l 
L
o
g
ic

Combinational 
Logic 

Manipulates 

(Processes) Data

Sequential 
Logic 

Synchronizes & 
Save Data

Inputs

10 ns 12 ns

CLK

F = 1/T 

= 1/___

1-1.23

Example

for(i=0; i < 100; i++)
C[i] = (A[i] + B[i]) / 4;

10 ns per input set = _______ ns total

Memory

A[i]

B[i]

A:

B:

C:

i

C
n

tr

1-1.24

Pipelining Example

Stage 1 Stage 2

Clock 0 A[0] + B[0]

Clock 1

Clock 2

Stage 1 Stage 2

for(i=0; i < 100; i++)
C[i] = (A[i] + B[i]) / 4;

Pipelining refers to 
insertion of registers to 
___ combinational logic 
into smaller stages that 
can be ____________ 
in time (i.e. create an 
assembly line)



1-1.25

Need for Registers

• Provides separation between combinational functions

– Without registers, fast signals could ______________ to data values in 

the next operation stage

Performing an 

operation yields 

signals with different 

paths and delays

We don’t want signals from two 

different data values mixing.  

Therefore we must  collect and 

synchronize the values from 

the previous operation before 

passing them on to the next

Signal i

Signal j

5 ns

2 ns

CLKCLK

1-1.26

REAL-WORLD EXAMPLE

SW vs. HW Sorting (MergeSort)

1-1.27

Sorting: Software Implementation

• Let's select a "good" sorting algorithm: mergesort

– To sort n elements takes time O(___________)

– Big-O (e.g. O(f(n))) just means exec. time is roughly proportional to f(n)

• Let's then compare the performance of a SW implementation 
vs. a hardware-accelerated process

Processor

Memory

A D C

106
35

0

fffff

51
78

1-1.28

Merge Two Sorted Lists
• Consider the problem of merging two sorted lists 

into a new combined sorted list

• Keep a "read" pointer (r1 and r2) for each sorted 

array and a "write" (w) pointer to the destination

• Key concept: One comparison yields correct 

placement of 1 number in the output

– Implies runtime of merge is O(n)

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

Inputs Lists

Merged Result

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w



1-1.29

Recursive Sort (MergeSort)

• Break sorting problem into 

smaller sorting problems and 

merge the results at the end

• Mergesort(0..n)

– If list is size 1, return 

– Else

• Mergesort(0..n/2 - 1)

• Mergesort(n/2 .. n)

• Combine each sorted list of n/2 

elements into a sorted n-element 

list

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7

0

3

1

8

2

6

3

5 10

4 5

4 2

6 7

3 7 6 8 5 10

0 1 2 3 4 5

2 4

6 7

3 6 7 8 2 4

0 1 2 3 4 5

5 10

6 7

2 3 4 5 6 7

0 1 2 3 4 5

8 10

6 7

Mergesort(0,8)

Mergesort(0,4) Mergesort(4,8)

Mergesort(0,2)

Mergesort(2,4)

Mergesort(4,6)

Mergesort(6,8)

M
e

rg
e

s

1-1.30

Recursive Sort (MergeSort)

• Run-time analysis

– # of recursion levels =

• _____________

– Total operations to merge each level =

• ___ operations total to merge 

two lists over all recursive

calls at a particular level

• Mergesort = O(n * log2(n) )

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7

0

3

1

8

2

6

3

5 10

4 5

4 2

6 7

3 7 6 8 5 10

0 1 2 3 4 5

2 4

6 7

3 6 7 8 2 4

0 1 2 3 4 5

5 10

6 7

2 3 4 5 6 7

0 1 2 3 4 5

8 10

6 7

Mergesort(0,8)

Mergesort(0,4) Mergesort(4,8)

Mergesort(0,2)

Mergesort(2,4)

Mergesort(4,6)

Mergesort(6,8)

M
e

rg
e

s

1-1.31

Sorting: Software Implementation

• To perform the algorithm in software means the processor 
fetches instructions, executes them, which causes the 
processor to then read and write the data in memory into it's 
sorted positions

• Sorting 64 element on a 2.8 GHz Xeon processor

– _______ microseconds

• Can we do better w/ more HW?
Processor

Memory

A D C

106
35

0

fffff

Custom 

(Sort) HW

51
78

1-1.32

HW Sort Network

• Start with a small building block in HW: 

compare_and_swap (CAS)

– _______ input passed to Y0 and _________ to Y1

if( X0 < X1 ) {

Y0 = X0;  Y1 = X1;

} else {

Y0 = X1;  Y1 = X0;

}

SW-Equiv. 
Operation

X0

X1

Y0

Y1

https://www.mn.uio.no/ifi/english/research/projects/cosrecos/publications/paper/fpga11koch.pdf

compare_and_swap
HW block diagram

0

1

S

Y

0

1

S

Y

<

X0

X1
Y0

Y1

HW Schematic



1-1.33

HW Sort Network

• Now we can use multiple CAS blocks to sort 

multiple values

http://dbis.cs.tu-dortmund.de/cms/en/publications/2012/sorting-networks/sorting-networks.pdf

Simplified Diagram 
(Each vertical line is 
a CAS between the 
attached elements)

I0

I1

Y0

Y1

I0

I1

Y0

Y1

X0

X1

X2

X3

I0

I1

Y0

Y1

I0

I1

Y0

Y1

I0

I1

Y0

Y1

Y0

Y1

Y2

Y3

4-Input/Output Sorting Network

X0

X1

X2

X3

Y0

Y1

Y2

Y3

1-1.34

I0

I1

Y0

Y1

I0

I1

Y0

Y1

X0

X1

X2

X3

I0

I1

Y0

Y1

I0

I1

Y0

Y1

I0

I1

Y0

Y1

Y0

Y1

Y2

Y3

HW Sort Network Example

http://dbis.cs.tu-dortmund.de/cms/en/publications/2012/sorting-networks/sorting-networks.pdf

7

9

2

5

2

5

7

9

I0

I1

Y0

Y1

I0

I1

Y0

Y1

X0

X1

X2

X3

I0

I1

Y0

Y1

I0

I1

Y0

Y1

I0

I1

Y0

Y1

Y0

Y1

Y2

Y3

4

2

3

1

1

2

3

4

1-1.35

HW Implementation

• A full 64-input/output sorting network in HW may 

not be feasible due to number of input/output 

signals

• Let us use an 8-input/output sorting network 

– Use it ________ to produce 8 groups of 8 sorted numbers

– Then _______ the 8 groups of 8 into a single group of 64

X0

X1

X2

X3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

1-1.36

First Stage Sorting

• We will read 8 numbers in 8 clocks from memory

• Sorting can be performed in a ______________ and the outputs saved

• We will read in 8 new numbers while we place the previous group of 8 

sorted numbers into a Queue/FIFO (_________________)

• The next sorted group will go into a 2nd FIFO to be merged with the first

X0

X1

X2

X3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

..
.

FIFO/Queue 1a/b

FIFO/Queue 2a/b

..
.

HW Sorting 

Network

8

8

...from 

memory 

(1 per clock)



1-1.37

Select-Value Unit

• Now that we have 2 sorted sequences of size 

N we need to merge them into a single sorted 

sequence of size ___________

• We can design a "Select-Value" unit shown 

below

if( X0 < X1 ) {

Y0 = X0;

} else {

Y0 = X1;

}

Operation

SelectValue

0

1

S

Y

<
Input FIFO/Queue 1

2 Sorted Sequences of 

size N
1 Sorted Sequence 

of size 2N

Output FIFO

Input FIFO/Queue 2

1-1.38

Merge Stages

• If we have a total of 64 numbers 

to sort we can arrange our 

merging in stages

– We can continue to merge until we 

get one sequence of 64 (the 

desired size)

X0

X1

X2

X3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

..
.

FIFO/Queue 1a/b

FIFO/Queue 2a/b

..
.

HW Sorting 

Network SelectVal

FIFO/Queue 1a/b

FIFO/Queue 2a/b
SelectVal

FIFO/Queue 1a/b

FIFO/Queue 2a/b
SelectVal

8

8

16

16

32

32

64
...to memory

...from 

memory 

(1 per clock)

3 7 6 8 5 10

0 1 2 3 4 5

2 4

6 7

3 6 7 8 2 4

0 1 2 3 4 5

5 10

6 7

2 3 4 5 6 7

0 1 2 3 4 5

8 10

6 7

Recall we merge two groups into 1

1-1.39

Merge Stages

• We can overlap each stage

– Merge 2 groups of 8 while we merge 2 groups of 16, etc.

– Without care, data that is output from one stage may overwrite data 

in the next stage that has yet to be merged

X0

X1

X2

X3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

FIFO/Queue 1a/b

FIFO/Queue 2a/b

HW Sorting 

Network
X0

X1

X2

X3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

12,9,8,7,6,5,4,3

11,10,8,7,5,2,1,0

1

3

4

7

8

11

15

16

SelectVal

to size 

16 FIFOs

1-1.40

Double (Ping-Pong) Buffers

• Need two sets of FIFOs at each stage (ping-pong buffers) 

where 1 set is used to fill while we process the other

Flip which pair of FIFOs we use 
for each group of 8.  While one 

group fills with new data we 
merge the data in the other pair



1-1.41

Sorting: Hardware Implementation

• Sorting 64 element on a 2.8 GHz Xeon processor [SW only]

– 16 microseconds

• Sorting 64 numbers in [old] custom HW

– CLK period = 30 ns => __ microseconds total

– 30 ns is due to the 8 number HW sorter

– Merging (Select-Val) stages are < 10 ns

– Can we improve?

30 ns

X0

X1

X2

X3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

..
.

FIFO/Queue 1a/b

FIFO/Queue 2a/b

..
.

HW Sorting 

Network SelectVal

FIFO/Queue 1a/b

FIFO/Queue 2a/b
SelectVal

FIFO/Queue 1a/b

FIFO/Queue 2a/b
SelectVal

8

8

16

16

32

32

64
...to memory

...from 

memory 

(1 per clock)

10 ns 10 ns 10 ns

What did we do to reduce 
CLK period in this design?

1-1.42

Pipelined Sorter

• Cut sorting network into 3 stages

• In any stage a signal encounters ___ compare-

and-swap elements

X0

X1

X2

X3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

10 ns 10 ns 10 ns

1-1.43

Sorting: Final Comparison

• Sorting 64 element on a 2.8 GHz Xeon processor [SW only]

– 16 microseconds total time

• Sorting 64 numbers in [old] custom HW

– CLK period = 30 ns => 6 microseconds total = ~2.5x speedup

• Sorting 64 numbers in [old] pipelined HW

– CLK period = 10 ns => 
__ microseconds total = ~__x speedup

– Processor is freed
to do other work

Processor

Memory

A D C

106
35

0

fffff

Custom 

(Sort) HW

51
78

1-1.44

DIGITAL LOGIC

Basic Gates



1-1.45

Digital Logic

• Digital Logic is built on…

– Binary variables can be only one of two possible 

values (e.g. 0 or 1)

– Three operations on binary variables

• AND (all inputs true => output is true)

• OR (any inputs true => output is true)

• NOT (output is opposite of input)

1-1.46

AND, OR, NOT Gates

NOT (Inverter) AND OR

X Z
X

Y

Z Z
X

Y

X   Y   Z

0    0    0

0    1    0

1    0    0

1    1    1

X   Y   Z

0    0    0

0    1    1

1    0    1

1    1    1

X   Z

0    1

1    0

YXZ ⋅= YXZ +=~XXXZ or  or  '=

AND = ‘ALL’

(true when ALL 

inputs are true)

OR = ‘ANY’

(true when ANY 

input is true)

1-1.47

Gates

• Gates can have more than 2 inputs but the functions stay 
the same

– AND = output = 1 if ________ inputs are 1

• Outputs 1 for only 1 input combination

– OR = output = 1 if _______ input is 1 

• Outputs 0 for only 1 input combination

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

X Y Z F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

3-input AND 3-input OR

F
x

y

z

F
x

y

z

1-1.48

NAND and NOR Gates

NAND NOR

Z
X

Y

Z

X   Y   Z

0    0    1

0    1    0

1    0    0

1    1    0

X

Y

X   Y   Z

0    0    1

0    1    1

1    0    1

1    1    0

YXZ ⋅= YXZ +=

X   Y   Z

0    0    0

0    1    0

1    0    0

1    1    1

X   Y   Z

0    0    0

0    1    1

1    0    1

1    1    1

AND NAND OR NOR

True if NOT ANY 

input is true

True if NOT ALL 

inputs are true



1-1.49

XOR and XNOR Gates

XOR

Z

X

Y

X   Y   Z

0    0    0

0    1    1

1    0    1

1    1    0

XNOR

Z

X

Y

X   Y   Z

0    0    1

0    1    0

1    0    0

1    1    1

YXZ ⊕= YXZ ⊕=

True if an odd # of inputs are true 

2 input case: True if inputs are different

True if an even # of inputs are true

2 input case: True if inputs are same

1-1.50

DIGITAL DESIGN GOALS

Speed, area, and power

1-1.51

Digital Design Goals

• When designing a circuit, we want to optimize for the 

following three things:

– ________________ (minimize)

– Speed (maximize) / Delay (minimize)

– ___________  (minimize)

• Can usually only optimize 2 of the 3

– There is a huge trade space!  This is what engineering is all about!

1-1.52

Minimizing Circuit Area

• Approaches:

– Reduce the __________________ used to 

implement a circuit

– Reduce the number of _________ to each gate

• In general a gate with n inputs requires ____ transistors 

to implement

• Simplify logic expressions (usually by factoring 

and then canceling terms) to reduce the 

number of gates



1-1.53

Maximizing Speed

• Speed is affected by:

– Levels of logic (path length)

– _________________

– Number of _______________to the gate

– Number of outputs a gate connects to (fan-out)

– Feature size and implementation technology

1-1.54

Levels of Logic

• Definition: _____________ number of gates 

[not including inverters] on _______ path 

from an input to the output

C  = P + P((V+B+T)+R)

1 Level

4 Levels

3 Levels

Max of all paths

= 4 levels

1-1.55

Gate Delays

• Order the gate 

types (1,2,3,4) in 

terms of fastest to 

slowest?

• Typical gate delay 

for a 2-input NAND 

or NOR is under a 

______ ps.

Z

X

Y
Z

X

Y

Z
X

Y

Z
X

Y

X Z

X

Y

Z Z
X

Y

1-1.56

Summary

• When designing a circuit, we want to optimize for the 

following three things:

– Area (minimize)

• Use fewer number of gates

• Use gates w/ fewer inputs

– Speed (maximize) / Delay (minimize)

• Fewer levels of logic

– Levels of logic = max. # of gates on a path from ANY input to output

• Relative speed of gates: INV, NAND/NOR, AND/OR, XOR/XNOR

– Power (minimize)

• How much energy the circuit consumes when switching between 0 and 1

• Can usually only optimize 2 of the 3



1-1.57

LOGIC FUNCTIONS INTRO

1-1.58

Arithmetic vs. Logic Functions

Arithmetic =>  f(x1,x2,…,xn)

• Domain => {Real}n

• Range => Real

Logic =>  f(x1,x2,…,xn)

• Domain => {0, 1}n

– Vector of n zeros or ones

– 2n such vectors are possible

• Range => {0, 1}

1-1.59

Logic Functions

• Map input combinations of n-bits to desired 

m-bit output

– When we design logic circuits we must describe 

the output for ______ possible input combination

– Can describe function with a truth table and then 

find its circuit implementation

Logic 

Circuit
OutputsInputs

IN0 IN1 IN2 OUT0 OUT1

0 0 0 0 1

0 0 1 1 1

…

1 1 1 0 0

1-1.60

Logic Function Domain

• Should specify ALL input combinations

• Most common representation is a truth table

– For those with SW experience, think of this as a large 

if..else if or switch structure to categorize the input

X Y Z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Truth Table

if(x,y,z == 000) then

…

else if (x,y,z == 001) then

…

else if (x,y,z == 010) then

…

If or Case statement



1-1.61

3-bit Prime Number Function

• Should specify ALL input combinations

• Most common representation is a truth table

– For those with SW experience, think of this as a large 

if..else if or switch structure to categorize the input

X Y Z P

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

X Y Z P

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

T
ru

th
 T

a
b

le

ON-set

OFF-set

P
ri

m
e
s
 b

e
tw

e
e
n

 
0
-7

if(x,y,z == 000) then

P = 0

else if (x,y,z == 001) then

P = 0

else if (x,y,z == 010) then

P = 1
If or Case statement

ON-Set (____terms) : Combinations where output=1
OFF-Set (____terms) : Combinations where output=0

1-1.62

Multi-output Functions

• N-inputs, m-outputs

– Rather than simply T/F output, may want to produce a set 

of signals (i.e. a multi-bit number, etc.) 

• Write out all combos, interpret combos, then write in 

answer

I3 I2 I1 C1 C0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

I3 I2 I1 M1 M0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1’s Count of Inputs Encode the highest input ID 
(ie. 3, 2, or 1) that is ON (=1)

1-1.63

Logic Function Examples

• Billy likes pizza but can only 

afford one-topping: Sausage, 

Pepperoni, and Mushrooms.  But 

today only there is a sale on a 

mushroom and sausage pizza.

• What pizza’s can Billy afford?  

Describe this function with a 

truth table.

1-1.64

Logic Functions

• 3 possible representations of a function

– Equation

– Schematic

– Truth Table

• Can convert between

representations

• Truth table is only

_______ representation*

• We need a way to "_________" 

(convert from TT to 

equation/schematic) a function

*  Canonical Sums/Products (minterm/maxterm) representation

provides a standard equation/schematic form that is 

unique per function



1-1.65

Example: Automobile Buzzer

• Consider an automobile warning Buzzer that sounds 

if you leave the Key in the ignition and the Door is 

open OR the Headlights are on and the Door is open.

• We can easily derive an equation and 

implementation:  B = ________________

Key in Ignition

Door Opened

Door Opened

Headlights on

K

D

H

D

B = K·D + H·D

Warning

Buzzer

B

1-1.66

Example: Automobile Buzzer

• But we see that we can alter this equation…

– From B = KD + HD

– To B = _____________

• Buzzer sounds if the Door is open and either the 

Key is in the Ignition or the Headlights are on

• Which is better?

• Notice that equations/circuit are not 

unique

– The truth table would be the same for both (i.e. 

unique)

B Warning

Buzzer

B = (K+H)·D

Key in Ignition

Door Opened

Headlights on

K

D

H

D K H B

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Non-unique circuit/equation

Truth Table is Unique

Key in Ignition

Door Opened

Door Opened

Headlights on

K

D

H

D

B = K·D + H·D

Warning
Buzzer

B

Non-unique circuit/equation


