
1-1.1

Spiral 1 / Unit 1

Combinational vs. Sequential Logic

Latency vs. Throughput (Pipelining)

Digital Design Goals

Logic Functions

1-1.2

Spiral Theory
Combinational

Design
Sequential

Design
System Level

Design
Implementation

and Tools
Project

1 • Performance
metrics (latency
vs. throughput)

• Boolean Algebra
• Canonical

Representations

• Decoders and
muxes

• Synthesis with
min/maxterms

• Synthesis with
Karnaugh Maps

• Edge-triggered
flip-flops

• Registers (with
enables)

• Encoded State
machine design

• Structural Verilog
HDL

• CMOS gate
implementation

• Fabrication
process

2
• Shannon's

Theorem

• Synthesis with
muxes &
memory

• Adder and
comparator
design

• Bistables,
latches, and Flip-
flops

• Counters
• Memories

• One-hot state
machine design

• Control and
datapath
decomposition

• MOS Theory
• Capacitance,

delay and sizing
• Memory

constructs

3 • HW/SW
partitioning

• Bus interfacing
• Single-cycle CPU

• Power and other
logic families

• EDA design
process

Spiral Content Mapping

1-1.3

Outcomes

• I know the difference between combinational and sequential
logic and can name examples of each.

• I understand latency, throughput, and at least 1 technique to
improve throughput

• I can identify when I need state vs. a purely combinational
function
– I can convert a simple word problem to a logic function (TT or canonical

form) or state diagram

• I can use Karnaugh maps to synthesize combinational functions
with several outputs

• I understand how a register with an enable functions & is built

• I can design a working state machine given a state diagram

• I can implement small logic functions with complex CMOS gates

1-1.4

COMBINATIONAL VS. SEQUENTIAL

1-1.5

Combinational vs. Sequential Logic

• All logic is categorized into 2 groups

– Combinational logic:

• Outputs = f(current inputs)

– Sequential Logic

• Outputs = f(current inputs, previous inputs)

• Sequential logic has the notion of “memory”
(remembering inputs or events that happened in the
past)

1-1.6

Combinational vs. Sequential

Outputs depend only on current

outputs

Outputs depend on current inputs

and previous inputs (previous

inputs summarized via state)

Current inputs Outputs

Current
inputs

Outputs

1 0 1

Sequential
Outputs (State)

feedback as
inputs

Sequential
Inputs

(Next State)

Combinational

Logic

Combinational

Logic

Sequential Logic

1-1.7

Combinational Example: Staircase Light
Switch

Whether or not the light is

on is only dependent on the

current position of the

switches

S1

S2

Light

Logic

Circuit
Light

S1

S2

S1 S2 Light

0 0 0

0 1 1

1 0 1

1 1 0

1-1.8

Water Tank Problem

• Build a control system for a pump to keep the
tank from going empty

Sensor

Low

Sensor

Pump Pump

High

Sensor

1-1.9

Combinational Logic

• With combinational logic the outputs only
depend on what the inputs are right now

7

4

3

It doesn’t matter what the inputs were previously

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

‘283+

1-1.10

Logic Functions

• Map input combinations of n-bits to desired
m-bit output

• Can describe function with a truth table and
then find its circuit implementation

Logic

Circuit
OutputsInputs

IN0 IN1 IN2 OUT0 OUT1

0 0 0 0 1

0 0 1 1 1

…

1 1 1 0 0

1-1.11

A

B

C

D

F

Logic Example

10

0

1

0 0
1

0

1

1-1.12

Sequential Example: Remote
Control

3 *10 30

32+

Time 1 Time 2

2

The channel is a time-dependent

function of the first button

pressed and the second (we must

remember the 3 and then use it

with the 2)

Inputting

channel 32

1-1.13

d(t)

q(t)

Clock pulse

Flip-Flops

• Flip-flops are the building blocks of registers
– 1 Flip-flop PER bit of input/output

– There are many kinds of flip-flops but the most common is the
D- (Data) Flip-flop (a.k.a. D-FF)

• D Flip-flop triggers on the clock edge and captures the D-value at
that instant and causes Q to remember it until the next edge
– Positive Edge: instant the clock transition from low to high (0 to 1)

Positive-Edge Triggered

D-FF

D Q

CLK

D-FF
Clock Signal

d(t) q(t)

1-1.14

Registers
• Registers are the most common sequential

device

• Registers sample the data input (D) on the
edge of a clock pulse (CP) and stores that
value at the output (Q)

• Analogy: Taking a picture with your digital
camera…when you press a button (clock
pulse) the camera samples the scene
(input) and remembers/saves it as a
snapshot (output) until the next trigger

t = 0 ns t = 1 ns t = 5 ns t = 7 ns t = 10 ns

Clock pulse

q(t) d(1) d(5) d(7) d(10)unk

d(t)

Some input value changing over time

d(1) d(2) d(3) d(4) d(5) d(6) d(7) d(8) d(9) d(10) d(11) d(12)

D

Q

CP
Clock pulse

Data Input

Data Output

(could be

many bits)

(could be

many bits)

Block Diagram of

a Register

The clock pulse

(positive edge)

here…

…causes q(t) to

sample and hold

the current d(t)

value

1-1.15

Registers and Flip-flops

• A register is simply a group
of D flip-flops that all
trigger on a single clock
pulse

D Q

D Q

D Q

D Q

CP

D3

D2

D1

D0

Q3

Q2

Q1

Q0

D-FF

D-FF

D-FF

D-FF

4-bit Register

CLK Qt+1

0 Qt

1 Qt

↑ Dt

Steady level of 0

or 1

Positive Edge

1-1.16

Pulses and Clocks

• Registers need an edge to trigger

• We can generate pulses at specific times
(creating an irregular pattern) when we know
the data we want has arrived

• Other registers in our hardware should trigger at
a regular interval

• For that we use a clock signal…

– Alternating high/low voltage pulse train

– Controls the ordering and timing of operations
performed in the processor

– 1 cycle is usually measured from rising/positive
edge to rising/positive edge

• Clock frequency (F) = # of cycles per second

• Clock Period (T) = 1 / Freq.

Processor

Clock Signal

0 (0V)

1 (5V)

1 cycle

2.8 GHz

= 2.8*109 cycles per second

= 0.357 ns/cycle

Op. 1 Op. 2 Op. 3

Clock Pulses

1-1.17

Summary

• Combinational logic

– Perform a specific function (mapping of 2n input
combinations to desired output combinations)

– No internal state or feedback
• Given a set of inputs, we will always get the same output after

some time (propagation) delay

• Sequential logic (“Storage” devices)

– Registers made up of flip-flops/latches are the
fundamental building blocks

• Controlled by a “clock” signal

• Sample data on a “clock” edge and remember that value until the
next edge

1-1.18

Combinational vs. Sequential

• Sequential logic (i.e. registers) is used to store
values ("storage devices")

– A register in HW is analogous to a variable in SW
(a variable or register stores a value until needed
at a later time)

• Combinational logic is used to process bits (i.e.
perform operations on values

– Combinational logic in HW is analogous to
operations (+,-,*,&,|,^,<,>) in SW

1-1.19

THROUGHPUT & LATENCY

1-1.20

Performance Depends on View Point?!

• What's faster:

– A 747 Jumbo Airliner

– An F-22 fighter jet

• If you are an individual interested in getting from
point A to point B, then the F-22

– This is known as latency [units of time]

– Time from the start of an operation until it completes

• If you are trying to evacuate a large number of
people, the 747 looks much better

– This is known as throughput [jobs/time]

1-1.21

Throughput vs. Latency

• If Latency is the Time it takes to perform 1 Job to complete and
Throughput = Jobs / Time…

• …Is Throughput = 1 / Latency?

• No!
– Latency is from the perspective of a single job

– Throughput is from the perspective of many jobs

– Parallelism is the great friend of throughput!

• We will see many times in this course some strategies for
improving throughput and sometimes latency

1-1.22

Clocking Methodologies

• Typical designs use both combinational and sequential logic
– Sequential logic: saves and synchronize data

– Combinational logic: performs some operation on the data

• Can use feed-forward or feed-back methodology

• Clock cycle must be set for the longest path between registers

R
e

g
is

te
r

Combo

Logic

Inputs

CLK

Feed-back Style Feed-forward Style

Combo

Logic

Combo

Logic

S
e
q

u
e
n
ti
a
l
L
o
g
ic

S
e
q

u
e
n
ti
a
l
L
o
g
ic

Combinational

Logic

Manipulates

(Processes) Data

Sequential

Logic

Synchronizes &

Save Data

Inputs

10 ns 12 ns

CLK

F = 1/T

= 1/___

1-1.23

Example

for(i=0; i < 100; i++)

C[i] = (A[i] + B[i]) / 4;

10 ns per input set = 1000 ns total

Memory
A[i]

B[i]

A:

B:

C:

i

C
n

tr

1-1.24

Pipelining Example

Stage 1 Stage 2

Clock 0 A[0] + B[0]

Clock 1 A[1] + B[1] (A[0] + B[0]) / 4

Clock 2 A[2] + B[2] (A[1] + B[1]) / 4

Stage 1 Stage 2

for(i=0; i < 100; i++)

C[i] = (A[i] + B[i]) / 4;

Pipelining refers to

insertion of registers to

split combinational logic

into smaller stages that

can be overlapped in

time (i.e. create an

assembly line)

1-1.25

Need for Registers

• Provides separation between combinational functions
– Without registers, fast signals could “catch-up” to data values in the

next operation stage

R
e

g
is

te
r

R
e

g
is

te
r

Performing an

operation yields

signals with different

paths and delays

We don’t want signals from two

different data values mixing.

Therefore we must collect and

synchronize the values from

the previous operation before

passing them on to the next

Signal i

Signal j

5 ns

2 ns

CLKCLK

1-1.26

REAL-WORLD EXAMPLE
SW vs. HW Sorting (MergeSort)

1-1.27

Sorting: Software Implementation

• Let's select a "good" sorting algorithm: mergesort
– To sort n elements takes time O(n*log n)

– Big-O (e.g. O(f(n))) just means exec. time is roughly proportional to f(n)

• Let's then compare the performance of a SW implementation
vs. a hardware-accelerated process

Processor

Memory

A D C

106
35

0

fffff

51
78

1-1.28

Merge Two Sorted Lists
• Consider the problem of merging two sorted lists

into a new combined sorted list

• Keep a "read" pointer (r1 and r2) for each sorted
array and a "write" (w) pointer to the destination

• Key concept: One comparison yields correct
placement of 1 number in the output

– Implies runtime of merge is O(n)

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

Inputs Lists

Merged Result

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w

3 7 6 8

0 1 2 3

3 6 7 8

0 1 2 3

r1 r2

w

1-1.29

Recursive Sort (MergeSort)

• Break sorting problem into
smaller sorting problems and
merge the results at the end

• Mergesort(0..n)

– If list is size 1, return

– Else
• Mergesort(0..n/2 - 1)

• Mergesort(n/2 .. n)

• Combine each sorted list of n/2
elements into a sorted n-element
list

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7

0

3

1

8

2

6

3

5 10

4 5

4 2

6 7

3 7 6 8 5 10

0 1 2 3 4 5

2 4

6 7

3 6 7 8 2 4

0 1 2 3 4 5

5 10

6 7

2 3 4 5 6 7

0 1 2 3 4 5

8 10

6 7

Mergesort(0,8)

Mergesort(0,4) Mergesort(4,8)

Mergesort(0,2)
Mergesort(2,4)
Mergesort(4,6)
Mergesort(6,8)

M
e

rg
e

s

1-1.30

Recursive Sort (MergeSort)

• Run-time analysis
– # of recursion levels =

• Log2(n)

– Total operations to merge each level =

• n operations total to merge
two lists over all recursive
calls at a particular level

• Mergesort = O(n * log2(n))

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7 3 8 6 5 10

0 1 2 3 4 5

4 2

6 7

7

0

3

1

8

2

6

3

5 10

4 5

4 2

6 7

3 7 6 8 5 10

0 1 2 3 4 5

2 4

6 7

3 6 7 8 2 4

0 1 2 3 4 5

5 10

6 7

2 3 4 5 6 7

0 1 2 3 4 5

8 10

6 7

Mergesort(0,8)

Mergesort(0,4) Mergesort(4,8)

Mergesort(0,2)
Mergesort(2,4)
Mergesort(4,6)
Mergesort(6,8)

M
e

rg
e

s

1-1.31

Sorting: Software Implementation

• To perform the algorithm in software means the processor
fetches instructions, executes them, which causes the
processor to then read and write the data in memory into it's
sorted positions

• Sorting 64 element on a 2.8 GHz Xeon processor
– 16 microseconds

• Can we do better w/ more HW?
Processor

Memory

A D C

106
35

0

fffff

Custom

(Sort) HW

51
78

1-1.32

HW Sort Network

• Start with a small building block in HW:
compare_and_swap (CAS)

– Smaller input passed to Y0 and larger to Y1

if(X0 < X1) {
Y0 = X0; Y1 = X1;

} else {
Y0 = X1; Y1 = X0;

}

SW-Equiv.

Operation

X0

X1

Y0

Y1

https://www.mn.uio.no/ifi/english/research/projects/cosrecos/publications/paper/fpga11koch.pdf

compare_and_swap

HW block diagram

0

1

S

Y

0

1

S

Y

<

X0

X1
Y0

Y1

HW Schematic

1-1.33

HW Sort Network

• Now we can use multiple CAS blocks to sort
multiple values

http://dbis.cs.tu-dortmund.de/cms/en/publications/2012/sorting-networks/sorting-networks.pdf

Simplified Diagram

(Each vertical line is

a CAS between the

attached elements)

I0

I1

Y0

Y1

I0

I1

Y0

Y1

X0

X1

X2

X3

I0

I1

Y0

Y1

I0

I1

Y0

Y1

I0

I1

Y0

Y1

Y0

Y1

Y2

Y3

4-Input/Output Sorting Network

X0

X1

X2

X3

Y0

Y1

Y2

Y3

1-1.34

I0

I1

Y0

Y1

I0

I1

Y0

Y1

X0

X1

X2

X3

I0

I1

Y0

Y1

I0

I1

Y0

Y1

I0

I1

Y0

Y1

Y0

Y1

Y2

Y3

HW Sort Network Example

http://dbis.cs.tu-dortmund.de/cms/en/publications/2012/sorting-networks/sorting-networks.pdf

7

9

2

5

2

9

5

7

2

5

7

9

2

5

7

9

I0

I1

Y0

Y1

I0

I1

Y0

Y1

X0

X1

X2

X3

I0

I1

Y0

Y1

I0

I1

Y0

Y1

I0

I1

Y0

Y1

Y0

Y1

Y2

Y3

4

2

3

1

3

2

1

4

1

3

2

4

1

2

3

4

1-1.35

HW Implementation

• A full 64-input/output sorting network in HW may
not be feasible due to number of input/output
signals

• Let us use an 8-input/output sorting network

– Use it 8 times to produce 8 groups of 8 sorted numbers

– Then merge the 8 groups of 8 into a single group of 64

X0

X1

X2

X3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

1-1.36

First Stage Sorting

• We will read 8 numbers in 8 clocks from memory

• Sorting can be performed in a single clock and the outputs saved

• We will read in 8 new numbers while we place the previous group of 8
sorted numbers into a Queue/FIFO (First-In, First-Out)

• The next sorted group will go into a 2nd FIFO to be merged with the first

X0

X1

X2

X3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

..
.

FIFO/Queue 1a/b

FIFO/Queue 2a/b
...

HW Sorting
Network

8

8

...from
memory

(1 per clock)

1-1.37

Select-Value Unit

• Now that we have 2 sorted sequences of size
N we need to merge them into a single sorted
sequence of size 2N

• We can design a "Select-Value" unit shown
below

if(X0 < X1) {
Y0 = X0;

} else {
Y0 = X1;

}

Operation

SelectValue

0

1

S

Y

<
Input FIFO/Queue 1

2 Sorted Sequences of
size N

1 Sorted Sequence
of size 2N

Output FIFO

Input FIFO/Queue 2

1-1.38

Merge Stages

• If we have a total of 64 numbers
to sort we can arrange our
merging in stages
– We can continue to merge until we

get one sequence of 64 (the
desired size)

X0

X1

X2

X3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

..
.

FIFO/Queue 1a/b

FIFO/Queue 2a/b

..
.

HW Sorting
Network SelectVal

FIFO/Queue 1a/b

FIFO/Queue 2a/b
SelectVal

FIFO/Queue 1a/b

FIFO/Queue 2a/b
SelectVal

8

8

16

16

32

32

64
...to memory

...from
memory

(1 per clock)

3 7 6 8 5 10

0 1 2 3 4 5

2 4

6 7

3 6 7 8 2 4

0 1 2 3 4 5

5 10

6 7

2 3 4 5 6 7

0 1 2 3 4 5

8 10

6 7

Recall we merge two groups into 1

1-1.39

Merge Stages

• We can overlap each stage
– Merge 2 groups of 8 while we merge 2 groups of 16, etc.

– Without care, data that is output from one stage may overwrite data
in the next stage that has yet to be merged

X0

X1

X2

X3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

FIFO/Queue 1a/b

FIFO/Queue 2a/b

HW Sorting
Network

X0

X1

X2

X3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

12,9,8,7,6,5,4,3

11,10,8,7,5,2,1,0

1

3

4

7

8

11

15

16

SelectVal

to size
16 FIFOs

1-1.40

Double (Ping-Pong) Buffers

• Need two sets of FIFOs at each stage (ping-pong buffers)
where 1 set is used to fill while we process the other

Flip which pair of FIFOs we use

for each group of 8. While one

group fills with new data we

merge the data in the other pair

1-1.41

Sorting: Hardware Implementation

• Sorting 64 element on a 2.8 GHz Xeon processor [SW only]
– 16 microseconds

• Sorting 64 numbers in [old] custom HW
– CLK period = 30 ns => 6 microseconds total

– 30 ns is due to the 8 number HW sorter

– Merging (Select-Val) stages are < 10 ns

– Can we improve?

30 ns

X0

X1

X2

X3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

..
.

FIFO/Queue 1a/b

FIFO/Queue 2a/b

..
.

HW Sorting
Network SelectVal

FIFO/Queue 1a/b

FIFO/Queue 2a/b
SelectVal

FIFO/Queue 1a/b

FIFO/Queue 2a/b
SelectVal

8

8

16

16

32

32

64
...to memory

...from
memory

(1 per clock)

10 ns 10 ns 10 ns

What did we do to reduce

CLK period in this design?

1-1.42

Pipelined Sorter

• Cut sorting network into 3 stages

• In any stage a signal encounters 2 compare-
and-swap elements

X0

X1

X2

X3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

10 ns 10 ns 10 ns

1-1.43

Sorting: Final Comparison

• Sorting 64 element on a 2.8 GHz Xeon processor [SW only]
– 16 microseconds total time

• Sorting 64 numbers in [old] custom HW
– CLK period = 30 ns => 6 microseconds total = ~2.5x speedup

• Sorting 64 numbers in [old] pipelined HW
– CLK period = 10 ns =>

2 microseconds total = ~8x speedup

– Processor is freed
to do other work

Processor

Memory

A D C

106
35

0

fffff

Custom

(Sort) HW

51
78

1-1.44

DIGITAL LOGIC
Basic Gates

1-1.45

Digital Logic

• Digital Logic is built on…

– Binary variables can be only one of two possible
values (e.g. 0 or 1)

– Three operations on binary variables

• AND (all inputs true => output is true)

• OR (any inputs true => output is true)

• NOT (output is opposite of input)

1-1.46

AND, OR, NOT Gates

NOT (Inverter) AND OR

X Z
X

Y
Z Z

X

Y

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

X Z

0 1

1 0

YXZ  YXZ ~XXXZ or or '

AND = ‘ALL’

(true when ALL

inputs are true)

OR = ‘ANY’

(true when ANY

input is true)

1-1.47

Gates

• Gates can have more than 2 inputs but the functions stay
the same
– AND = output = 1 if ALL inputs are 1

• Outputs 1 for only 1 input combination

– OR = output = 1 if ANY input is 1
• Outputs 0 for only 1 input combination

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

X Y Z F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

3-input AND 3-input OR

F
x

y

z

F
x

y

z

1-1.48

NAND and NOR Gates

NAND NOR

Z
X

Y
Z

X Y Z

0 0 1

0 1 0

1 0 0

1 1 0

X

Y

X Y Z

0 0 1

0 1 1

1 0 1

1 1 0

YXZ  YXZ 

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

AND NAND OR NOR

True if NOT ANY

input is true

True if NOT ALL

inputs are true

1-1.49

XOR and XNOR Gates

XOR

Z
X

Y

X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

XNOR

Z
X

Y

X Y Z

0 0 1

0 1 0

1 0 0

1 1 1

YXZ  YXZ 

True if an odd # of inputs are true

2 input case: True if inputs are different

True if an even # of inputs are true

2 input case: True if inputs are same

1-1.50

DIGITAL DESIGN GOALS
Speed, area, and power

1-1.51

Digital Design Goals

• When designing a circuit, we want to optimize for the
following three things:
– Area or Circuit Size (minimize)

– Speed (maximize) / Delay (minimize)

– Power (minimize)

• Can usually only optimize 2 of the 3
– There is a huge trade space! This is what engineering is all about!

1-1.52

Minimizing Circuit Area

• Approaches:

– Reduce the number of gates used to implement a
circuit

– Reduce the number of inputs to each gate

• In general a gate with n inputs requires 2n transistors to
implement

• Simplify logic expressions (usually by factoring
and then canceling terms) to reduce the
number of gates

1-1.53

Maximizing Speed

• Speed is affected by:

– Levels of logic (path length)

– Gate type

– Number of inputs (fan-in) to the gate

– Number of outputs a gate connects to (fan-out)

– Feature size and implementation technology

1-1.54

Levels of Logic

• Definition: Maximum number of gates [not
including inverters] on any path from an input
to the output

C = P + P((V+B+T)+R)

P

P

R

V

T
B

C
1 Level

4 Levels

3 Levels

Max of all paths

= 4 levels

1-1.55

Gate Delays

• Order the gate
types in terms of
fastest to slowest?

• Typical gate delay
for a 2-input NAND
or NOR is under a
100 ps.

Z
X

Y
Z

X

Y

Z
X

Y
Z

X

Y

X Z

X

Y
Z Z

X

Y

1

2

3

4

1-1.56

Digital Design Goals

• When designing a circuit, we want to optimize for the
following three things:
– Area (minimize)

• Use fewer number of gates

• Use gates w/ fewer inputs

– Speed (maximize) / Delay (minimize)

• Fewer levels of logic

– Levels of logic = max. # of gates on a path from ANY input to output

• Relative speed of gates: INV, NAND/NOR, AND/OR, XOR/XNOR

– Power (minimize)
• How much energy the circuit consumes when switching between 0 and 1

• Can usually only optimize 2 of the 3

1-1.57

LOGIC FUNCTIONS INTRO

1-1.58

Arithmetic vs. Logic Functions

Arithmetic => f(x1,x2,…,xn)

• Domain => {Real}n

• Range => Real

Logic => f(x1,x2,…,xn)

• Domain => {0, 1}n

– Vector of n zeros or ones

– 2n such vectors are possible

• Range => {0, 1}

1-1.59

Logic Functions

• Map input combinations of n-bits to desired
m-bit output

– When we design logic circuits we must describe
the output for EVERY possible input combination

– Can describe function with a truth table and then
find its circuit implementation

Logic

Circuit
OutputsInputs

IN0 IN1 IN2 OUT0 OUT1

0 0 0 0 1

0 0 1 1 1

…

1 1 1 0 0

1-1.60

Logic Function Domain

• Should specify ALL input combinations

• Most common representation is a truth table

– For those with SW experience, think of this as a large
if..else if or switch structure to categorize the input

X Y Z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Truth Table

if(x,y,z == 000) then

…

else if (x,y,z == 001) then

…

else if (x,y,z == 010) then

…

If or Case statement

1-1.61

3-bit Prime Number Function

• Should specify ALL input combinations

• Most common representation is a truth table

– For those with SW experience, think of this as a large
if..else if or switch structure to categorize the input

X Y Z P

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z P

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

T
ru

th
 T

a
b

le

ON-set

OFF-set

P
ri

m
e

s
 b

e
tw

e
e

n

0
-7

if(x,y,z == 000) then

P = 0

else if (x,y,z == 001) then

P = 0

else if (x,y,z == 010) then

P = 1
If or Case statement

ON-Set (Minterms) : Combinations where output=1

OFF-Set (Maxterms) : Combinations where output=0

1-1.62

Multi-output Functions
• N-inputs, m-outputs

– Rather than simply T/F output, may want to produce a set
of signals (i.e. a multi-bit number, etc.)

• Write out all combos, interpret combos, then write in
answer

I3 I2 I1 C1 C0

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

I3 I2 I1 M1 M0

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 0

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

1’s Count of Inputs Encode the highest input ID

(ie. 3, 2, or 1) that is ON (=1)

1-1.63

Logic Function Examples

• Billy likes pizza but can only
afford one-topping: Sausage,
Pepperoni, and Mushrooms. But
today only there is a sale on a
mushroom and sausage pizza.

• What pizza’s can Billy afford?
Describe this function with a
truth table.

1-1.64

Logic Functions

• 3 possible representations of a function
– Equation

– Schematic

– Truth Table

• Can convert between
representations

• Truth table is only
unique representation*

• We need a way to "synthesize"
(convert from TT to
equation/schematic) a function

* Canonical Sums/Products (minterm/maxterm) representation
provides a standard equation/schematic form that is
unique per function

1-1.65

Example: Automobile Buzzer

• Consider an automobile warning Buzzer that sounds
if you leave the Key in the ignition and the Door is
open OR the Headlights are on and the Door is open.

• We can easily derive an equation and
implementation: B = KD + HD

Key in Ignition

Door Opened

Door Opened

Headlights on

K

D

H

D

B = K·D + H·D

Warning

Buzzer

B

1-1.66

Example: Automobile Buzzer

• But we see that we can alter this equation…
– From B = KD + HD

– To B = D(K+H)

• Buzzer sounds if the Door is open and either the
Key is in the Ignition or the Headlights are on

• Which is better?

• Notice that equations/circuit are not
unique
– The truth table would be the same for both (i.e.

unique)

B Warning

Buzzer

B = (K+H)·D

Key in Ignition

Door Opened

Headlights on

K

D

H

D K H B

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Non-unique circuit/equation

Truth Table is Unique

Key in Ignition

Door Opened

Door Opened

Headlights on

K

D

H

D

B = K·D + H·D

Warning

Buzzer

B

Non-unique circuit/equation

