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Spiral 0 – Review of EE 109L

Class Overview

Analog to Digital Conversion

Binary Representation

MIPS Assembly and CPU Organization

1.2

EE 209 in Context

EE 109L

EE 209

EE 457

EE 354L

EE 477L

EE 459L

Hardware / Software Systems 
(Assembly Language 

Programming)

Computer 
Architecture

Caching, multicore, 
and other techniques 
to improve processor 

performance

Physically building and 
fabricating chips that 
implement the more 

abstract logic designs

VLSI

Capstone Project Course

EE 451

Building chips with embedded 
processors and custom 

processing hardware

EE 454L

Introduction to Digital System 
Design

More Digital System Design

System On Chip 
(SoC) Design

Parallel & Distributed 
Computing

Programming paradigms & 
other considerations to 

leverage parallel systems

1.3

Where Does Digital Design Fit In

• Electrical, biomedical, or computer

scientists/engineers develop 

algorithms for 

– Wireless and communication systems

– Media and imaging systems

– Biomedical devices

• Digital design engineers take these general algorithms and 

architect/design a HW/SW system to implement them dealing 

with constraints of size, speed, weight, power, etc.

• Other electrical engineers may help with the final fabrication 

of the chip

1.4

Digital System Spectrum

• Key idea:  Any “algorithm” can be implemented in HW or 
SW or some mixture of both

• A digital systems can be located anywhere in a spectrum 
of:

– ALL HW:  (a.k.a. Application-Specific IC’s)

– ALL SW:  An embedded computer system

• Advantages of application specific HW

– Faster, less power

• Advantages of an embedded computer system (i.e. 
general purpose HW for executing SW)

– Reprogrammable (i.e. make a mistake, fix it)

– Less expensive than a dedicated hardware system (single 
computer system can be used for multiple designs)

• Phone:  System-on-Chip (SoC) approach

– Some dedicated HW for intensive camera/radio/etc. 
decoding operations

– Programmable processor for UI & other simple tasks
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1.5

Processing Logic Approaches

• Custom Logic
– Logic that directly implements a 

specific task

– Example above may use separate 
adders and a multiplier unit

• General Purpose Processor
– Logic designed to execute SW 

instructions

– Provides basic processing resources 
that are reused by each instruction

• Design Decision: HW only or 
HW/SW
– HW only = faster

– HW/SW = much more flexible
+ *

Data storageInstruc.
Store

ADD X,Y
ADD A,B
MUL X,A

GPP Implementation of 
(X+Y)*(A+B)

+

+

*

X

Y

A

B

Out

Custom Logic Circuit 
Implementation

1.6

HW/SW Design Example
• Suppose you need to design a JPEG encoder (converts raw pixels to JPG format…consisting 

of a preprocessing stage + encoding stage) for the camera on your mobile phone 

• Your design considerations requirements

– 1 second max. latency (time)

– 200 mW max power 

– Energy (Power * Time) as low as possible

– Consider time to market (design time) and cost

• Options

1. Software only running on microcontroller/processor

2. Hardware preprocessor + Software encoder

3. Hardware preprocessor + Fixed-point software encoder

4. Hardware preprocessor + encoder

Taken from "Embedded System Design" by Vahid and Givargis, Wiley and Sons Publishing 2002.

Option 1 Option 2 Option 3 Option 4

Performance (sec.) > 10 9.1 1.5 0.1

Power (milliwatt) < 200 33 33 40

Size (gates) N/A 98,000 90,000 128,000

Energy (Joules=sec*watt) 0.3 0.05 0.004

Time to Market 3 months 6 months 8 months 12 months

1.7

Integrated Solutions: Systems-On-Chip

• Chips now combine general 

purpose processing, hardware 

accelerated engines for things 

like comm., video, security, etc., 

and integrated I/O peripherals

• Some contain customizable 

hardware resources (FPGAs) for 

custom hardware processing 

engines

Xilinx Zynq MPSoC

Qualcomm SnapdragonTM

1.8

Mobile Phone Block Diagram

Analog to 
Digital 

Conversion
(ADC)

Speaker, 
LCD 

Display,
Antenna

USB

Sensors Digital 
Processing
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User Interface 
Control)

Custom Logic
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Analog 
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(DAC)

Analog 
Inputs
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Digital System Abstraction Levels

C / C++ / Java

Logic Gates

Transistors

H
W

S
W

Voltage / Currents

Assembly / 
Machine Code

Applications

LibrariesOS

Processor / Memory / I/O

Functional Units
(Registers, Adders, Muxes)

Controlling 
Input

(Gate )

Output 
(Drain )

Source

F
x

y

z

+B

A

S

if (x > 0)
x = x + y - z;

a = b*x;

Transistors

Logic
AND 
gate

Functional 
Units

Chips
(Processors)

Software 
Code

CMPR X,0
JLE SKIP
ADD X,X,Y
SUB X,X,Z

SKIP  MUL A,B,X

-
-

-
-

-
-

-

1110010101…

Our Focus in EE 209

1.10

LEARNING

How are we going to go about this class

1.11

Reflecting on Learning

• Bjork's Presentation

• Spiral Model (Interleaving)

• We need to be a team?

– I need you

– You need me

• What do you want to learn?

– I will be your guide and try to build experiences 

1.12

Concept Map

Digital HW 

Design

Design 

Entry

Target 

Implementation

Technology

EDA (CAD) 

Tools
Constructs

Programmable 

Logic (FPGA)

ASIC

SoC / 

MPSoC

Custom or 

Semi-Custom 

Layout

Combinational 

Logic (Gates)

Sequential 

Logic

Registers & 

Counters

Multiplexers

State 

Machines

Adders

Synthesis

Simulation

Physical Design 

(Layout & 

Routing)

Hardware 

Description 

Languages

Schematic 

Entry

Verilog / 

System 

Verilog

Power / 

Timing 

Analysis

VHDL

SystemC
RTL 

Code

Behavioral 

vs. Cycle 

Accurate 

High-Level 

Synthesis

Standard 

Cell Layout

HW / SW Co-

Simulation

Process / 

Technology

Boolean 

Algebra

Structural 

(Gate) 

Level

CMOS

VLSI

MOSFET
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Spiral Content Mapping

Spiral Theory
Combinational 

Design

Sequential

Design

System Level 

Design

Implementation 

and Tools
Project

1 • Performance 

metrics (latency 

vs. throughput)

• Boolean Algebra 

• Canonical 

Representations

• Decoders and 

muxes

• Synthesis with 

min/maxterms

• Synthesis with 

Karnaugh Maps

• Edge-triggered 

flip-flops

• Registers (with 

enables)

• Encoded State

machine design

• Structural Verilog 

HDL

• CMOS gate 

implementation

• Fabrication 

process

2
• Shannon's 

Theorem

• Synthesis with 

muxes & 

memory

• Adder and 

comparator 

design

• Bistables, 

latches, and Flip-

flops

• Counters

• Memories

• One-hot state 

machine design

• Control and 

datapath

decomposition

• MOS Theory 

• Capacitance, 

delay and sizing

• Memory 

constructs

3 • HW/SW 

partitioning

• Bus interfacing

• Single-cycle CPU

• Power and other 

logic families

• EDA design 

process

1.14

REVIEW

1.15

Analog to Digital Conversion

• 1 Analog signal can be converted to a set of digital 

signals (0’s and 1’s)

• 3 Step Process

– Sample

– Quantize (Measure)

– Digitize

Analog
time

Digital

Analog to 
Digital 

Converter

volts

time

0

1

0

1

0

1

0

1

0

1

11000

1.16

ADC Conversion

• Sampling converts continuous time scale to a discrete (finite) 
set of voltage samples

• Quantization converts continuous voltage scale to a discrete 
(finite) set of numbers

• Each number is then output as bits

000

255

177=10110001

∆t
Sampled Signal Each sample is quantized
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Interpreting Binary Strings

• Given a string of 1’s and 0’s, you need to know the 

representation system being used, before you can 

understand the value of those 1’s and 0’s.

• Information (value) = Bits + Context (System)

01000001 = ?

6510 ‘A’ASCII

Unsigned 
Binary system ASCII 

system

Signed System

1.18

Unsigned and Signed Variables

• Unsigned variables use unsigned binary  (normal 

power-of-2 place values) to represent numbers

• Signed variables use the 2’s complement system 

(Neg. MSB weight) to represent numbers

128 64 32 16 8 4 2 1

1 0 0 1 0 0 1 1 = +147

-128 64 32 16 8 4 2 1

1 0 0 1 0 0 1 1 = -109

1.19

2’s Complement System

• MSB has negative weight

• MSB determines sign of the number
– 1 = negative

– 0 = positive

• Positive numbers retain same representation as unsigned
– 0110 = +6 in unsigned and in 2's complement

• To take the negative of a number requires taking the 
complement

1001

0110
+      1

0111

x = -7

Bit flip (1’s comp.)
Add 1
-x = -(-7) = +7

0111

1000
+      1

1001

x = +7

Bit flip (1’s comp.)
Add 1
-x = -(+7) = -7

1.20

Zero and Sign Extension

2’s complement = Sign Extension (Replicate sign bit):

Unsigned = Zero Extension (Always add leading 0’s):

111011 = 00111011

011010 = 00011010

110011 = 11110011

pos.

neg.

Increase a 6-bit number to 8-bit 
number by zero extending

Sign bit is just repeated as 
many times as necessary

• Extension is the process of increasing the number of bits used 
to represent a number without changing its value
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Zero and Sign Truncation

• Truncation is the process of decreasing the number of bits used 
to represent a number without changing its value

2’s complement = Sign Truncation (Remove copies of sign bit):

Unsigned = Zero Truncation (Remove leading 0’s):

00111011 = 111011

00011010 = 011010

11110011 = 10011

pos.

neg.

Decrease an 8-bit number to 6-bit 
number by truncating 0’s.  Can’t 

remove a ‘1’ because value is changed

Any copies of the MSB can be 
removed without changing the 

numbers value.  Be careful not to 
change the sign by cutting off 

ALL the sign bits.

1.22

Representation Range

• Given an n-bit system we 

can represent 2n unique 

numbers

– In unsigned systems we 

use all combinations to 

represent positive 

numbers [0 to 2n-1]

– In 2’s complement we use 

half for positive and half 

for negative 

[-2n-1 to +2n-1-1]

n 2n

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

1.23

Hexadecimal Representation

• Since values in modern computers are many 
bits, we use hexadecimal as a shorthand 
notation (4 bits = 1 hex digit)

– 1101 0010 = D2 hex

– 0111 0110 1100 1011 = 76CB hex

1.24

REVIEW OF MIPS ASSEMBLY
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MIPS Instruction Set

• 32-bit data and address
– Memory supports Byte, Halfword (2-bytes), and Word (4-bytes) access

• 32 General Purpose Registers ($0-$31)
– $0 = Constant value of 0

• Fixed Size Instructions of 32-bits (4 bytes)
– Three formats (ways to partition and interpret those 32-bits)

– R-Type (Register Type) [ex.  ADD $5, $10, $20]

– I-Type (Immediate Type) [ex. LW $5, 0x230($6)]

– J-Type (Jump Type) [ex.  J  Addr.]

1.26

MIPS Data Sizes

Integer

• 3 Sizes Defined

– Byte (B) 

• 8-bits

– Halfword (H) 

• 16-bits = 2 bytes

– Word (W)

• 32-bits = 4 bytes

Floating Point

• 3 Sizes Defined

– Single (S)

• 32-bits = 4 bytes

– Double (D) 

• 64-bits = 8 bytes

• (For a 32-bit data bus, a 

double would be accessed 

from memory in 2 reads)

1.27

MIPS GPR’s
Assembler Name Reg. Number Description

$zero $0 Constant 0 value

$at $1 Assembler temporary

$v0-$v1 $2-$3 Procedure return values or expression 

evaluation

$a0-$a3 $4-$7 Arguments/parameters

$t0-$t7 $8-$15 Temporaries

$s0-$s7 $16-$23 Saved Temporaries

$t8-$t9 $24-$25 Temporaries

$k0-$k1 $26-$27 Reserved for OS kernel

$gp $28 Global Pointer (Global and static 

variables/data)

$sp $29 Stack Pointer

$fp $30 Frame Pointer

$ra $31 Return address for current procedure

1.28

MIPS Programmer-Visible Registers

MIPS Core

00400000PC:

$0 - $31

32-bits

• General Purpose Registers (GPR’s)
– Hold data operands or addresses 

(pointers) to data stored in 
memory

• Special Purpose Registers
– PC: Program Counter (32-bits)

• Holds the address of the next 
instruction to be fetched from 
memory & executed

– HI: Hi-Half Reg. (32-bits)
• For MUL, holds 32 MSB’s of 

result.  For DIV, holds 32-bit 
remainder

– LO: Lo-Half Reg. (32-bits)
• For MUL, holds 32 LSB’s of 

result. For DIV, holds 32-bit 
quotient

• Memory
– Stores instructions and data

GPR’s Special 
Purpose Registers

HI:

LO:

Memory

01345008

0168900a

2035f00c

0x400004

0x400008

ADD

SUB

LW

0x400000

…

2035f00c 0x1000100
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Instruction Format

• 32-bit Fixed Size Instructions

• R-Type

– 3 register

operands

• I-Type

– 2 register +

16-bit const.

• J-Type

– 26-bit jump

address

opcode rs (src1)

6-bits 5-bits

rt (src2)

5-bits

rd (dest)

5-bits

shamt

5-bits

function

6-bits

opcode rs (src1)

6-bits 5-bits

rt (src/dst)

5-bits

immediate

16-bits

opcodeJ-Type Jump address

26-bits6-bits

I-Type

R-Type

add $5,$7,$8 000000 00111 01000 00101 00000 100000

lw $18, -4($3) 100011 00011 10010 1111 1111 1111 1100

j 0x0400018 000010 0000 0100 0000 0000 0000 0001 10

1.30

R-Type Instructions

• Format

– rs, rt, rd are 5-bit fields for register numbers

– shamt = shift amount and is used for shift 

instructions indicating # of places to shift bits

– opcode and func identify actual operation

• Example:

– ADD $5, $24, $17

opcode rs (src1)

6-bits 5-bits

rt (src2)

5-bits

rd (dest)

5-bits

shamt

5-bits

function

6-bits

000000 11000

opcode rs

10001

rt

00101

rd

00000

shamt

100000

func

Arith. Inst. $24 $17 $5 unused ADD

1.31

R-Type Arithmetic/Logic Instructions
C operator Assembly Notes

+ ADD  Rd, Rs, Rt

- SUB  Rd, Rs, Rt Order:  R[s] – R[t]. SUBU for unsigned

* MULT   Rs, Rt
MULTU Rs, Rt

Result in HI/LO.  Use mfhi and mflo
instruction to move results

* MUL   Rd, Rs, Rt If multiply won’t overflow 32-bit result

/ DIV   Rs, Rt
DIVU Rs, Rt

R[s] / R[t].  
Remainder in HI, quotient in LO

& AND  Rd, Rs, Rt

| OR   Rd, Rs, Rt

^ XOR  Rd, Rs, Rt

~( | ) NOR Rd, Rs, Rt Can be used for bitwise-NOT (~)

<< SLL   Rd, Rs, shamt
SLLV  Rd, Rs, Rt

Shifts R[s] left by shamt (shift 
amount) or R[t] bits

>>  (signed) SRA   Rd, Rs, shamt
SRAV  Rd, Rs, Rt

Shifts R[s] right by shamt or R[t] bits 
replicating sign bit to maintain sign

>>  (unsigned) SRL   Rd, Rs, shamt
SRLV  Rd, Rs, Rt

Shifts R[s] left by shamt or R[t] bits 
shifting in 0’s

<, >, <=, >= SLT Rd, Rs, Rt
SLTU Rd, Rs, Rt

Order:  R[s] – R[t].  Sets R[d]=1 if R[s] 
< R[t], 0 otherwise

1.32

I-Type Instructions

• Format

– rs, rt are 5-bit fields for register numbers

– immediate is a 16-bit constant

– opcode identifies actual operation

• Example:

– ADDI $5, $24, 1

– LW $5, -8($3)

opcode rs (src1)

6-bits 5-bits

rt (src/dst)

5-bits

immediate

16-bits

001000 11000

opcode rs

00101

rt

ADDI $24 $5

0000 0000 0000 0001

immediate

1

010011 00011 00101

LW $3 $5

1111 1111 1111 1000

-8
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Load Format (LW)

• LW  Rt, offset(Rs)

– Rt = Destination register

– offset(Rs) = Address of desired data

– Shorthand:  R[t] = M[ offset + R[s] ]

– offset limited to 16-bit signed number

• Examples

– LW $2, 0x40($3)   // R[2] = 0xF8BE97CD

– LW  $2, 0xFFFC($4) // R[2] = 0x5A12C5B7

5A12C5B7

134982FE

F8BE97CD

00002000R[3]

0000204CR[4]

old val.R[2]

0x002048

0x002044

0x002040

1.34

Store Format (SW)

• SW  Rt, offset(Rs)

– Rt = Source register

– offset(Rs) = Address to store data

– Shorthand:  M[ offset + R[s] ] = R[t]

– offset limited to 16-bit signed number

• Examples

– SW $2, 0x40($3)   

– SW $2, 0xFFF8($4) 

00002000R[3]

0000204CR[4]

123489ABR[2]
123489AB

0x002048

123489AB

00000000

0x002044

0x002040

1.35

Loading an Immediate

• If immediate (constant) 16-bits or less

– Use ORI or ADDI instruction with $0 register

– Examples

• ADDI $2, $0, 1 // R[2] = 0 + 1 = 1

• ORI $2, $0, 0xF110 // R[2] = 0 | 0xF110 = 0xF110

• If immediate more than 16-bits

– Immediates limited to 16-bits so we must load constant 

with a 2 instruction sequence using the special LUI (Load 

Upper Immediate) instruction

– To load $2 with 0x12345678

• LUI $2,0x1234

• ORI $2,$2,0x5678

12340000R[2]

12345678R[2]

OR 00005678

LUI

ORI

1.36

Branch Instructions
• Add a displacement to the PC (PC = PC + disp.)

• Conditional Branches

– Branches only if a particular condition is true

– Fundamental Instrucs.: BEQ (if equal), BNE (not equal)

– Syntax:  BNE/BEQ Rs, Rt, label

• Compares Rs, Rt and if EQ/NE, branch to label, else continue

• Unconditional Branches

– Always branches to a new location in the code

– Instruction:  BEQ $0,$0,label

label: ----
----
----
b   label
----

----
beq $2,$3,label
----
----

label: ----

!=

=

opcode rs (src1)

6-bits 5-bits

rt (src/dst)

5-bits

immediate

16-bits

000100 00010 00011 0000 0000 0000 0010BEQ $2,$3,+0x8
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Two-Operand Compare & Branches

• Two-operand comparison is accomplished 

using the SLT/SLTI instruction

– Syntax:  SLT Rd,Rs,Rt or SLT Rd,Rs,imm

• If Rs < Rt then Rd = 1, else Rd = 0

– Use appropriate BNE/BEQ instruction to infer 

relationship

Branch if… SLT BNE/BEQ

$2 < $3 SLT $1,$2,$3 BNE $1,$0,label

$2 ≤ $3 SLT $1,$3,$2 BEQ $1,$0,label

$2 > $3 SLT $1,$3,$2 BNE $1,$0,label

$2 ≥ $3 SLT $1,$2,$3 BEQ $1,$0,label

1.38

Jump Instructions

• Jumps provide method of 

branching beyond range of 

16-bit displacement

• Syntax:  J  label/address

– Operation:  PC = address

– Address is appended with 

two 0’s just like branch 

displacement yielding a 28-

bit address with upper 4-bits 

of PC unaffected

• New instruction format: 

J-Type

opcode

6-bits

Jump address

26-bits

Old PC

00Jump address
Old PC 
[31:28]

PC before execution of Jump

New PC after execution of Jump

Sample Jump instruction

4-bits 26-bits 2-bits

1.39

Jump Register

• ‘jr’ instruction can be used if a full 32-bit jump 

is needed or variable jump address is needed

• Syntax:  JR  rs

– Operation: PC = R[s]

– R-Type machine code format

• Usage:  

– Can load rs with an immediate address

– Can calculate rs for a variable jump (class member 

functions, switch statements, etc.)

1.40

Instruction Ordering

• Identify which components each instruction type would use 

and in what order: ALU-Type, LW, SW, BEQ

ALU-Type
(ADD $5,$6,$7)

PC

I-Cache / I-MEM

Addr. Data

D-Cache / D-MEM

Addr. DataGeneral 
Purpose 

Registers

A
L

U Res.

Zero

LW
(LW $5,40($7) )

SW
(SW $5,40($7) )

BEQ
(BEQ $2,$3,disp)
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Single Cycle CPU Datapath

• Each instruction will execute in one LONG clock cycle

• To understand the whole datapath we’ll walk through it in five phases 

(Fetch, Decode, Execute, Memory, Writeback)

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

Register File

Read 
Reg. 1 #

Read 
Reg. 2 #

Write
Reg. #

Write 
Data

Read 
data 1

Read 
data 2

Sign 
Extend

A
L

U Res.

Zero

0

1

Sh. 
Left 
2

+

D-Cache

Addr.

Read 
Data

Write 
Data

A

B

4

0

1

16 32

5

5

5

CLK

1.42

Multiplexers

• Your first HW building block

• Traffic cop…Selects 1 data input and passes it to the output

A[31:0]

Thus, input 1 = 
B[31:0] is selected 
and passed to the 

output

Select bits = 12 = 110.
1

2

2-to-1 Mux

i0

i1

y

s

B[31:0]

B[31:0]

1.43

ADD $12,$13,$14

Fetch 
ADD

Decode instruction 
and fetch operands

Add $13 +$14 Just pass 
sum through

Write 
sum to 

$t4

I-Cache

0

1 P
C

+

Addr.

Instruc.

Register File

Read 
Reg. 1 #

Read 
Reg. 2 #

Write
Reg. #

Write 
Data

Read 
data 1

Read 
data 2

Sign 
Extend

A
L

U Res.

Zero

0

1

Sh. 
Left 
2

+

D-Cache

Addr.

Read 
Data

Write 
Data

A

B

4

0

1

16 32

5

5

5

$13 value

$14 value

$13

$14

$12

sum

sum

sum

Addr. of 
ADD

PC+4

1.44

LW  $9,0x40($16)

Fetch LW Decode instruction 
and fetch operands

Add offset 0x40 
to $16

Read word 
from memory

Write 
word to 

$9

I-Cache

0

1 P
C

+

Addr.

Instruc.

Register File

Read 
Reg. 1 #

Read 
Reg. 2 #

Write
Reg. #

Write 
Data

Read 
data 1

Read 
data 2

Sign 
Extend

A
L

U Res.

Zero

0

1

Sh. 
Left 
2

+

D-Cache

Addr.

Read 
Data

Write 
Data

A

B

4

0

1

16 32

5

5

5

$16 value

0x00000040
0
x0

0
4
0

16

9

0x00000040

$16 + 
0x40

Data

Data

Addr. of 
LW

PC+4



1.45

SW  $9,0x40($16)

Fetch LW Decode instruction 
and fetch operands

Add offset 0x40 
to $16

Write word to 
memory

I-Cache

0

1 P
C

+

Addr.

Instruc.

Register File

Read 
Reg. 1 #

Read 
Reg. 2 #

Write
Reg. #

Write 
Data

Read 
data 1

Read 
data 2

Sign 
Extend

A
L

U Res.

Zero

0

1

Sh. 
Left 
2

+

D-Cache

Addr.

Read 
Data

Write 
Data

A

B

4

0

1

16 32

5

5

5

$16 value

0x00000040

0
x0

0
4
0

16

9

0x00000040

$16 + 
0x40

Data

Addr. of 
LW

PC+4

$9 value
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BEQ $4,$5,disp.

Fetch BEQ, 
increment PC, 
pass on PC+4

Decode instruction 
and fetch operands, 

pass on PC+4

Do $4-$5 and 
check if result = 0
Calculate branch 
target address

Update PC Do 
Nothing

I-Cache

0

1 P
C

+

Addr.

Instruc.

Register File

Read 
Reg. 1 #

Read 
Reg. 2 #

Write
Reg. #

Write 
Data

Read 
data 1

Read 
data 2

Sign 
Extend

A
L

U Res.

Zero

0

1

Sh. 
Left 
2

+

D-Cache

Addr.

Read 
Data

Write 
Data

A

B

4

0

1

16 32

5

5

5

$4

$5

$4 value

$5 value

d
is

p
la

c
e
m

e
n
t

displacement

PC+4 PC+4+disp. 
(Branch Addr.)
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SAMPLE PROBLEMS 

(IF TIME ALLOWS)

1.48

AND, OR, NOT Gates

NOT (Inverter) AND OR

X Z
X

Y
Z Z

X

Y

X   Y   Z

0    0    0

0    1    0

1    0    0

1    1    1

X   Y   Z

0    0    0

0    1    1

1    0    1

1    1    1

X   Z

0    1

1    0

YXZ ⋅= YXZ +=~XXXZ or  or  '=

AND = ‘ALL’
(true when ALL 
inputs are true)

OR = ‘ANY’
(true when ANY 

input is true)
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Staircase Light Switch Logic

S1

S2

Light

1.50

Water Tank Problem

• Build a control system for a pump to keep the 

tank from going empty

Sensor

Low 
Sensor

Pump Pump

High 
Sensor

1.51

Instruction Ordering Solutions

• Identify which components each instruction type would use 

and in what order: ALU-Type, LW, SW, BEQ

ALU-Type
(ADD $5,$6,$7)

1. PC

2. I-Memory

3. Registers

4. ALU

5. WB to Reg.

PC

I-Cache / I-MEM

Addr. Data

D-Cache / D-MEM

Addr. DataGeneral 
Purpose 

Registers
A

L
U Res.

Zero

LW
(LW $5,40($7))

1. PC

2. I-Memory

3. Base. Reg.

4. ALU

5. Read Mem.

6. WB to Reg.

SW
(SW $5,40($7))

1. PC

2. I-Memory

3. Base. Reg.

4. ALU

5. Write Mem.

BEQ
(BEQ $2,$3,disp)

1. PC

2. I-Memory

3. Register Access

4. Compare

5. If Zero,
Update PC=PC+d


