
1.1

Spiral 0 – Review of EE 109L

Class Overview

Analog to Digital Conversion

Binary Representation

MIPS Assembly and CPU Organization

1.2

EE 209 in Context

EE 109L

EE 209

EE 457

EE 354L

EE 477L

EE 459L

Hardware / Software Systems
(Assembly Language

Programming)

Computer
Architecture

Caching, multicore,
and other techniques
to improve processor

performance

Physically building and
fabricating chips that
implement the more

abstract logic designs

VLSI

Capstone Project Course

EE 451

Building chips with embedded
processors and custom

processing hardware

EE 454L

Introduction to Digital System
Design

More Digital System Design

System On Chip
(SoC) Design

Parallel & Distributed
Computing

Programming paradigms &
other considerations to

leverage parallel systems

1.3

Where Does Digital Design Fit In

• Electrical, biomedical, or computer

scientists/engineers develop

algorithms for

– Wireless and communication systems

– Media and imaging systems

– Biomedical devices

• Digital design engineers take these general algorithms and

architect/design a HW/SW system to implement them dealing

with constraints of size, speed, weight, power, etc.

• Other electrical engineers may help with the final fabrication

of the chip

1.4

Digital System Spectrum

• Key idea: Any “algorithm” can be implemented in HW or
SW or some mixture of both

• A digital systems can be located anywhere in a spectrum
of:

– ALL HW: (a.k.a. Application-Specific IC’s)

– ALL SW: An embedded computer system

• Advantages of application specific HW

– Faster, less power

• Advantages of an embedded computer system (i.e.
general purpose HW for executing SW)

– Reprogrammable (i.e. make a mistake, fix it)

– Less expensive than a dedicated hardware system (single
computer system can be used for multiple designs)

• Phone: System-on-Chip (SoC) approach

– Some dedicated HW for intensive camera/radio/etc.
decoding operations

– Programmable processor for UI & other simple tasks

C
o

m
p

u
ti

n
g

 S
y
s
te

m

S
p

e
c
tr

u
m

Application
Specific Hardware

(no software)

General Purpose
HW w/ Software

F
le

x
ib

il
it

y,
 D

e
s

ig
n

 T
im

e

P
e

rf
o

rm
a

n
c

e
,
L

o
w

 P
o

w
e

r

C
o

s
t

1.5

Processing Logic Approaches

• Custom Logic
– Logic that directly implements a

specific task

– Example above may use separate
adders and a multiplier unit

• General Purpose Processor
– Logic designed to execute SW

instructions

– Provides basic processing resources
that are reused by each instruction

• Design Decision: HW only or
HW/SW
– HW only = faster

– HW/SW = much more flexible
+ *

Data storageInstruc.
Store

ADD X,Y
ADD A,B
MUL X,A

GPP Implementation of
(X+Y)*(A+B)

+

+

*

X

Y

A

B

Out

Custom Logic Circuit
Implementation

1.6

HW/SW Design Example
• Suppose you need to design a JPEG encoder (converts raw pixels to JPG format…consisting

of a preprocessing stage + encoding stage) for the camera on your mobile phone

• Your design considerations requirements

– 1 second max. latency (time)

– 200 mW max power

– Energy (Power * Time) as low as possible

– Consider time to market (design time) and cost

• Options

1. Software only running on microcontroller/processor

2. Hardware preprocessor + Software encoder

3. Hardware preprocessor + Fixed-point software encoder

4. Hardware preprocessor + encoder

Taken from "Embedded System Design" by Vahid and Givargis, Wiley and Sons Publishing 2002.

Option 1 Option 2 Option 3 Option 4

Performance (sec.) > 10 9.1 1.5 0.1

Power (milliwatt) < 200 33 33 40

Size (gates) N/A 98,000 90,000 128,000

Energy (Joules=sec*watt) 0.3 0.05 0.004

Time to Market 3 months 6 months 8 months 12 months

1.7

Integrated Solutions: Systems-On-Chip

• Chips now combine general

purpose processing, hardware

accelerated engines for things

like comm., video, security, etc.,

and integrated I/O peripherals

• Some contain customizable

hardware resources (FPGAs) for

custom hardware processing

engines

Xilinx Zynq MPSoC

Qualcomm SnapdragonTM

1.8

Mobile Phone Block Diagram

Analog to
Digital

Conversion
(ADC)

Speaker,
LCD

Display,
Antenna

USB

Sensors Digital
Processing

In
te

rc
o
n
n
e

c
t

Microprocessors
(Software for

User Interface
Control)

Custom Logic
(JPEG

Encoding)

In
te

rc
o
n
n
e

c
t

Outputs

Digital to
Analog

Conversion
(DAC)

Analog
Inputs
(Radio,
WiFi,

sensors)

Digital
Inputs
(USB,

Buttons)

Clock

Reset

1.9

Digital System Abstraction Levels

C / C++ / Java

Logic Gates

Transistors

H
W

S
W

Voltage / Currents

Assembly /
Machine Code

Applications

LibrariesOS

Processor / Memory / I/O

Functional Units
(Registers, Adders, Muxes)

Controlling
Input

(Gate)

Output
(Drain)

Source

F
x

y

z

+B

A

S

if (x > 0)
x = x + y - z;

a = b*x;

Transistors

Logic
AND
gate

Functional
Units

Chips
(Processors)

Software
Code

CMPR X,0
JLE SKIP
ADD X,X,Y
SUB X,X,Z

SKIP MUL A,B,X

-
-

-
-

-
-

-

1110010101…

Our Focus in EE 209

1.10

LEARNING

How are we going to go about this class

1.11

Reflecting on Learning

• Bjork's Presentation

• Spiral Model (Interleaving)

• We need to be a team?

– I need you

– You need me

• What do you want to learn?

– I will be your guide and try to build experiences

1.12

Concept Map

Digital HW

Design

Design

Entry

Target

Implementation

Technology

EDA (CAD)

Tools
Constructs

Programmable

Logic (FPGA)

ASIC

SoC /

MPSoC

Custom or

Semi-Custom

Layout

Combinational

Logic (Gates)

Sequential

Logic

Registers &

Counters

Multiplexers

State

Machines

Adders

Synthesis

Simulation

Physical Design

(Layout &

Routing)

Hardware

Description

Languages

Schematic

Entry

Verilog /

System

Verilog

Power /

Timing

Analysis

VHDL

SystemC
RTL

Code

Behavioral

vs. Cycle

Accurate

High-Level

Synthesis

Standard

Cell Layout

HW / SW Co-

Simulation

Process /

Technology

Boolean

Algebra

Structural

(Gate)

Level

CMOS

VLSI

MOSFET

1.13

Spiral Content Mapping

Spiral Theory
Combinational

Design

Sequential

Design

System Level

Design

Implementation

and Tools
Project

1 • Performance

metrics (latency

vs. throughput)

• Boolean Algebra

• Canonical

Representations

• Decoders and

muxes

• Synthesis with

min/maxterms

• Synthesis with

Karnaugh Maps

• Edge-triggered

flip-flops

• Registers (with

enables)

• Encoded State

machine design

• Structural Verilog

HDL

• CMOS gate

implementation

• Fabrication

process

2
• Shannon's

Theorem

• Synthesis with

muxes &

memory

• Adder and

comparator

design

• Bistables,

latches, and Flip-

flops

• Counters

• Memories

• One-hot state

machine design

• Control and

datapath

decomposition

• MOS Theory

• Capacitance,

delay and sizing

• Memory

constructs

3 • HW/SW

partitioning

• Bus interfacing

• Single-cycle CPU

• Power and other

logic families

• EDA design

process

1.14

REVIEW

1.15

Analog to Digital Conversion

• 1 Analog signal can be converted to a set of digital

signals (0’s and 1’s)

• 3 Step Process

– Sample

– Quantize (Measure)

– Digitize

Analog
time

Digital

Analog to
Digital

Converter

volts

time

0

1

0

1

0

1

0

1

0

1

11000

1.16

ADC Conversion

• Sampling converts continuous time scale to a discrete (finite)
set of voltage samples

• Quantization converts continuous voltage scale to a discrete
(finite) set of numbers

• Each number is then output as bits

000

255

177=10110001

∆t
Sampled Signal Each sample is quantized

1.17

Interpreting Binary Strings

• Given a string of 1’s and 0’s, you need to know the

representation system being used, before you can

understand the value of those 1’s and 0’s.

• Information (value) = Bits + Context (System)

01000001 = ?

6510 ‘A’ASCII

Unsigned
Binary system ASCII

system

Signed System

1.18

Unsigned and Signed Variables

• Unsigned variables use unsigned binary (normal

power-of-2 place values) to represent numbers

• Signed variables use the 2’s complement system

(Neg. MSB weight) to represent numbers

128 64 32 16 8 4 2 1

1 0 0 1 0 0 1 1 = +147

-128 64 32 16 8 4 2 1

1 0 0 1 0 0 1 1 = -109

1.19

2’s Complement System

• MSB has negative weight

• MSB determines sign of the number
– 1 = negative

– 0 = positive

• Positive numbers retain same representation as unsigned
– 0110 = +6 in unsigned and in 2's complement

• To take the negative of a number requires taking the
complement

1001

0110
+ 1

0111

x = -7

Bit flip (1’s comp.)
Add 1
-x = -(-7) = +7

0111

1000
+ 1

1001

x = +7

Bit flip (1’s comp.)
Add 1
-x = -(+7) = -7

1.20

Zero and Sign Extension

2’s complement = Sign Extension (Replicate sign bit):

Unsigned = Zero Extension (Always add leading 0’s):

111011 = 00111011

011010 = 00011010

110011 = 11110011

pos.

neg.

Increase a 6-bit number to 8-bit
number by zero extending

Sign bit is just repeated as
many times as necessary

• Extension is the process of increasing the number of bits used
to represent a number without changing its value

1.21

Zero and Sign Truncation

• Truncation is the process of decreasing the number of bits used
to represent a number without changing its value

2’s complement = Sign Truncation (Remove copies of sign bit):

Unsigned = Zero Truncation (Remove leading 0’s):

00111011 = 111011

00011010 = 011010

11110011 = 10011

pos.

neg.

Decrease an 8-bit number to 6-bit
number by truncating 0’s. Can’t

remove a ‘1’ because value is changed

Any copies of the MSB can be
removed without changing the

numbers value. Be careful not to
change the sign by cutting off

ALL the sign bits.

1.22

Representation Range

• Given an n-bit system we

can represent 2n unique

numbers

– In unsigned systems we

use all combinations to

represent positive

numbers [0 to 2n-1]

– In 2’s complement we use

half for positive and half

for negative

[-2n-1 to +2n-1-1]

n 2n

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

1.23

Hexadecimal Representation

• Since values in modern computers are many
bits, we use hexadecimal as a shorthand
notation (4 bits = 1 hex digit)

– 1101 0010 = D2 hex

– 0111 0110 1100 1011 = 76CB hex

1.24

REVIEW OF MIPS ASSEMBLY

1.25

MIPS Instruction Set

• 32-bit data and address
– Memory supports Byte, Halfword (2-bytes), and Word (4-bytes) access

• 32 General Purpose Registers ($0-$31)
– $0 = Constant value of 0

• Fixed Size Instructions of 32-bits (4 bytes)
– Three formats (ways to partition and interpret those 32-bits)

– R-Type (Register Type) [ex. ADD $5, $10, $20]

– I-Type (Immediate Type) [ex. LW $5, 0x230($6)]

– J-Type (Jump Type) [ex. J Addr.]

1.26

MIPS Data Sizes

Integer

• 3 Sizes Defined

– Byte (B)

• 8-bits

– Halfword (H)

• 16-bits = 2 bytes

– Word (W)

• 32-bits = 4 bytes

Floating Point

• 3 Sizes Defined

– Single (S)

• 32-bits = 4 bytes

– Double (D)

• 64-bits = 8 bytes

• (For a 32-bit data bus, a

double would be accessed

from memory in 2 reads)

1.27

MIPS GPR’s
Assembler Name Reg. Number Description

$zero $0 Constant 0 value

$at $1 Assembler temporary

$v0-$v1 $2-$3 Procedure return values or expression

evaluation

$a0-$a3 $4-$7 Arguments/parameters

$t0-$t7 $8-$15 Temporaries

$s0-$s7 $16-$23 Saved Temporaries

$t8-$t9 $24-$25 Temporaries

$k0-$k1 $26-$27 Reserved for OS kernel

$gp $28 Global Pointer (Global and static

variables/data)

$sp $29 Stack Pointer

$fp $30 Frame Pointer

$ra $31 Return address for current procedure

1.28

MIPS Programmer-Visible Registers

MIPS Core

00400000PC:

$0 - $31

32-bits

• General Purpose Registers (GPR’s)
– Hold data operands or addresses

(pointers) to data stored in
memory

• Special Purpose Registers
– PC: Program Counter (32-bits)

• Holds the address of the next
instruction to be fetched from
memory & executed

– HI: Hi-Half Reg. (32-bits)
• For MUL, holds 32 MSB’s of

result. For DIV, holds 32-bit
remainder

– LO: Lo-Half Reg. (32-bits)
• For MUL, holds 32 LSB’s of

result. For DIV, holds 32-bit
quotient

• Memory
– Stores instructions and data

GPR’s Special
Purpose Registers

HI:

LO:

Memory

01345008

0168900a

2035f00c

0x400004

0x400008

ADD

SUB

LW

0x400000

…

2035f00c 0x1000100

1.29

Instruction Format

• 32-bit Fixed Size Instructions

• R-Type

– 3 register

operands

• I-Type

– 2 register +

16-bit const.

• J-Type

– 26-bit jump

address

opcode rs (src1)

6-bits 5-bits

rt (src2)

5-bits

rd (dest)

5-bits

shamt

5-bits

function

6-bits

opcode rs (src1)

6-bits 5-bits

rt (src/dst)

5-bits

immediate

16-bits

opcodeJ-Type Jump address

26-bits6-bits

I-Type

R-Type

add $5,$7,$8 000000 00111 01000 00101 00000 100000

lw $18, -4($3) 100011 00011 10010 1111 1111 1111 1100

j 0x0400018 000010 0000 0100 0000 0000 0000 0001 10

1.30

R-Type Instructions

• Format

– rs, rt, rd are 5-bit fields for register numbers

– shamt = shift amount and is used for shift

instructions indicating # of places to shift bits

– opcode and func identify actual operation

• Example:

– ADD $5, $24, $17

opcode rs (src1)

6-bits 5-bits

rt (src2)

5-bits

rd (dest)

5-bits

shamt

5-bits

function

6-bits

000000 11000

opcode rs

10001

rt

00101

rd

00000

shamt

100000

func

Arith. Inst. $24 $17 $5 unused ADD

1.31

R-Type Arithmetic/Logic Instructions
C operator Assembly Notes

+ ADD Rd, Rs, Rt

- SUB Rd, Rs, Rt Order: R[s] – R[t]. SUBU for unsigned

* MULT Rs, Rt
MULTU Rs, Rt

Result in HI/LO. Use mfhi and mflo
instruction to move results

* MUL Rd, Rs, Rt If multiply won’t overflow 32-bit result

/ DIV Rs, Rt
DIVU Rs, Rt

R[s] / R[t].
Remainder in HI, quotient in LO

& AND Rd, Rs, Rt

| OR Rd, Rs, Rt

^ XOR Rd, Rs, Rt

~(|) NOR Rd, Rs, Rt Can be used for bitwise-NOT (~)

<< SLL Rd, Rs, shamt
SLLV Rd, Rs, Rt

Shifts R[s] left by shamt (shift
amount) or R[t] bits

>> (signed) SRA Rd, Rs, shamt
SRAV Rd, Rs, Rt

Shifts R[s] right by shamt or R[t] bits
replicating sign bit to maintain sign

>> (unsigned) SRL Rd, Rs, shamt
SRLV Rd, Rs, Rt

Shifts R[s] left by shamt or R[t] bits
shifting in 0’s

<, >, <=, >= SLT Rd, Rs, Rt
SLTU Rd, Rs, Rt

Order: R[s] – R[t]. Sets R[d]=1 if R[s]
< R[t], 0 otherwise

1.32

I-Type Instructions

• Format

– rs, rt are 5-bit fields for register numbers

– immediate is a 16-bit constant

– opcode identifies actual operation

• Example:

– ADDI $5, $24, 1

– LW $5, -8($3)

opcode rs (src1)

6-bits 5-bits

rt (src/dst)

5-bits

immediate

16-bits

001000 11000

opcode rs

00101

rt

ADDI $24 $5

0000 0000 0000 0001

immediate

1

010011 00011 00101

LW $3 $5

1111 1111 1111 1000

-8

1.33

Load Format (LW)

• LW Rt, offset(Rs)

– Rt = Destination register

– offset(Rs) = Address of desired data

– Shorthand: R[t] = M[offset + R[s]]

– offset limited to 16-bit signed number

• Examples

– LW $2, 0x40($3) // R[2] = 0xF8BE97CD

– LW $2, 0xFFFC($4) // R[2] = 0x5A12C5B7

5A12C5B7

134982FE

F8BE97CD

00002000R[3]

0000204CR[4]

old val.R[2]

0x002048

0x002044

0x002040

1.34

Store Format (SW)

• SW Rt, offset(Rs)

– Rt = Source register

– offset(Rs) = Address to store data

– Shorthand: M[offset + R[s]] = R[t]

– offset limited to 16-bit signed number

• Examples

– SW $2, 0x40($3)

– SW $2, 0xFFF8($4)

00002000R[3]

0000204CR[4]

123489ABR[2]
123489AB

0x002048

123489AB

00000000

0x002044

0x002040

1.35

Loading an Immediate

• If immediate (constant) 16-bits or less

– Use ORI or ADDI instruction with $0 register

– Examples

• ADDI $2, $0, 1 // R[2] = 0 + 1 = 1

• ORI $2, $0, 0xF110 // R[2] = 0 | 0xF110 = 0xF110

• If immediate more than 16-bits

– Immediates limited to 16-bits so we must load constant

with a 2 instruction sequence using the special LUI (Load

Upper Immediate) instruction

– To load $2 with 0x12345678

• LUI $2,0x1234

• ORI $2,$2,0x5678

12340000R[2]

12345678R[2]

OR 00005678

LUI

ORI

1.36

Branch Instructions
• Add a displacement to the PC (PC = PC + disp.)

• Conditional Branches

– Branches only if a particular condition is true

– Fundamental Instrucs.: BEQ (if equal), BNE (not equal)

– Syntax: BNE/BEQ Rs, Rt, label

• Compares Rs, Rt and if EQ/NE, branch to label, else continue

• Unconditional Branches

– Always branches to a new location in the code

– Instruction: BEQ $0,$0,label

label: ----

b label

beq $2,$3,label

label: ----

!=

=

opcode rs (src1)

6-bits 5-bits

rt (src/dst)

5-bits

immediate

16-bits

000100 00010 00011 0000 0000 0000 0010BEQ $2,$3,+0x8

1.37

Two-Operand Compare & Branches

• Two-operand comparison is accomplished

using the SLT/SLTI instruction

– Syntax: SLT Rd,Rs,Rt or SLT Rd,Rs,imm

• If Rs < Rt then Rd = 1, else Rd = 0

– Use appropriate BNE/BEQ instruction to infer

relationship

Branch if… SLT BNE/BEQ

$2 < $3 SLT $1,$2,$3 BNE $1,$0,label

$2 ≤ $3 SLT $1,$3,$2 BEQ $1,$0,label

$2 > $3 SLT $1,$3,$2 BNE $1,$0,label

$2 ≥ $3 SLT $1,$2,$3 BEQ $1,$0,label

1.38

Jump Instructions

• Jumps provide method of

branching beyond range of

16-bit displacement

• Syntax: J label/address

– Operation: PC = address

– Address is appended with

two 0’s just like branch

displacement yielding a 28-

bit address with upper 4-bits

of PC unaffected

• New instruction format:

J-Type

opcode

6-bits

Jump address

26-bits

Old PC

00Jump address
Old PC
[31:28]

PC before execution of Jump

New PC after execution of Jump

Sample Jump instruction

4-bits 26-bits 2-bits

1.39

Jump Register

• ‘jr’ instruction can be used if a full 32-bit jump

is needed or variable jump address is needed

• Syntax: JR rs

– Operation: PC = R[s]

– R-Type machine code format

• Usage:

– Can load rs with an immediate address

– Can calculate rs for a variable jump (class member

functions, switch statements, etc.)

1.40

Instruction Ordering

• Identify which components each instruction type would use

and in what order: ALU-Type, LW, SW, BEQ

ALU-Type
(ADD $5,$6,$7)

PC

I-Cache / I-MEM

Addr. Data

D-Cache / D-MEM

Addr. DataGeneral
Purpose

Registers

A
L

U Res.

Zero

LW
(LW $5,40($7))

SW
(SW $5,40($7))

BEQ
(BEQ $2,$3,disp)

1.41

Single Cycle CPU Datapath

• Each instruction will execute in one LONG clock cycle

• To understand the whole datapath we’ll walk through it in five phases

(Fetch, Decode, Execute, Memory, Writeback)

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

A
L

U Res.

Zero

0

1

Sh.
Left
2

+

D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

5

CLK

1.42

Multiplexers

• Your first HW building block

• Traffic cop…Selects 1 data input and passes it to the output

A[31:0]

Thus, input 1 =
B[31:0] is selected
and passed to the

output

Select bits = 12 = 110.
1

2

2-to-1 Mux

i0

i1

y

s

B[31:0]

B[31:0]

1.43

ADD $12,$13,$14

Fetch
ADD

Decode instruction
and fetch operands

Add $13 +$14 Just pass
sum through

Write
sum to

$t4

I-Cache

0

1 P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

A
L

U Res.

Zero

0

1

Sh.
Left
2

+

D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

5

$13 value

$14 value

$13

$14

$12

sum

sum

sum

Addr. of
ADD

PC+4

1.44

LW $9,0x40($16)

Fetch LW Decode instruction
and fetch operands

Add offset 0x40
to $16

Read word
from memory

Write
word to

$9

I-Cache

0

1 P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

A
L

U Res.

Zero

0

1

Sh.
Left
2

+

D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

5

$16 value

0x00000040
0
x0

0
4
0

16

9

0x00000040

$16 +
0x40

Data

Data

Addr. of
LW

PC+4

1.45

SW $9,0x40($16)

Fetch LW Decode instruction
and fetch operands

Add offset 0x40
to $16

Write word to
memory

I-Cache

0

1 P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

A
L

U Res.

Zero

0

1

Sh.
Left
2

+

D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

5

$16 value

0x00000040

0
x0

0
4
0

16

9

0x00000040

$16 +
0x40

Data

Addr. of
LW

PC+4

$9 value

1.46

BEQ $4,$5,disp.

Fetch BEQ,
increment PC,
pass on PC+4

Decode instruction
and fetch operands,

pass on PC+4

Do $4-$5 and
check if result = 0
Calculate branch
target address

Update PC Do
Nothing

I-Cache

0

1 P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

A
L

U Res.

Zero

0

1

Sh.
Left
2

+

D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

5

$4

$5

$4 value

$5 value

d
is

p
la

c
e
m

e
n
t

displacement

PC+4 PC+4+disp.
(Branch Addr.)

1.47

SAMPLE PROBLEMS

(IF TIME ALLOWS)

1.48

AND, OR, NOT Gates

NOT (Inverter) AND OR

X Z
X

Y
Z Z

X

Y

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

X Z

0 1

1 0

YXZ ⋅= YXZ +=~XXXZ or or '=

AND = ‘ALL’
(true when ALL
inputs are true)

OR = ‘ANY’
(true when ANY

input is true)

1.49

Staircase Light Switch Logic

S1

S2

Light

1.50

Water Tank Problem

• Build a control system for a pump to keep the

tank from going empty

Sensor

Low
Sensor

Pump Pump

High
Sensor

1.51

Instruction Ordering Solutions

• Identify which components each instruction type would use

and in what order: ALU-Type, LW, SW, BEQ

ALU-Type
(ADD $5,$6,$7)

1. PC

2. I-Memory

3. Registers

4. ALU

5. WB to Reg.

PC

I-Cache / I-MEM

Addr. Data

D-Cache / D-MEM

Addr. DataGeneral
Purpose

Registers
A

L
U Res.

Zero

LW
(LW $5,40($7))

1. PC

2. I-Memory

3. Base. Reg.

4. ALU

5. Read Mem.

6. WB to Reg.

SW
(SW $5,40($7))

1. PC

2. I-Memory

3. Base. Reg.

4. ALU

5. Write Mem.

BEQ
(BEQ $2,$3,disp)

1. PC

2. I-Memory

3. Register Access

4. Compare

5. If Zero,
Update PC=PC+d

