
 1

 EE 209 Homework 4

Name: __Solutions______________________________
Due: Score: ________
Show work to get full credit. Remember, use on only one side of the paper and staple them together.

Only use a calculator to CHECK your work, not to DO your work.

1. (32 pts.) Perform the following addition and subtraction problems assuming 2’s

complement numbers. State whether overflow does or does not occur for each

problem. Justify your answer for why overflow does or does not occur. (You can

easily check your work by converting to decimal.)

a.) 1010 0110 b.) 0010 0001

 +1101 1011 +0111 1001

 11000 0001 1001 1010

n+n=n

cout=1,cin=1

No

Overflow

p+p=n

cout=0,cin=1

Overflow

c.) 1000 0010 d.) 0101 1001

 -1010 1111 -1010 0101

 || ||

 1000 0010 0101 1001

 +0101 0000 +0101 1010

 + 1 + 1

 1101 0011 1011 0100

n+p=n

cout=0,cin=0

No

Overflow

n+n=p

cout=0,cin=1

Overflow

 2

2. (10 pts.) Build an equivalent full-adder using two half-adders as building blocks

along with additional gate(s) if needed.

Answer:

X Y

S

HACout

X Y

X Y

S

HACout

CI

SCout

Could also

be an XOR

Note: We could use an XOR gate in place of the OR gate since both Cout’s will

never be 1 at the same time.

module hw4_q2(
 input X,
 input Y,
 input Cin,
 output S,
 output Cout
);
 wire Stemp, CA, CB;
 // Can add either X+Y, X+Cin or Y+Cin on this adder
 // with the other input and Stemp on the 2nd HA
 ha a1(.A(X), .B(Y), .S(Stemp), .Cout(CA));
 ha a2(.A(Stemp), .B(Cin), .S(S), .Cout(CB));
 // can also be XOR
 or u0(Cout, CA, CB);

endmodule

 3

3. (10 pts.) Using half-adders and full-adders design a circuit that takes in a 5-bit

unsigned number, X (X4..X0) and produces an output equal to X + 2110. Your design

should minimize the area required (i.e. use half-adders where possible.)

Answer:

 Y = X + 21 = X4 X3 X2 X1 X0 + 10101

The first bit addition does not have a carry in so we can use a half-adder (X0 + 1). The

second bit only adds the possible carry from previous step since the second bit in 21 is 0

(same for fourth bit). The third bit requires a full adder since (X2 + 1 + CarryFromBit2),

same for fifth bit. In total we use 2 full-adders and 3 half-adders.

X Y

S

CinFACout

X Y

S

HACout

X Y

S

HACout

X Y

S

CinFACout

X Y

S

HACout

X3 X2 X1 X0X4 1 1 1

Z3 Z2 Z1 Z0Z4Z5

module hw4_q3(
 input [4:0] X,
 output [5:0] S
);
 // Important note: Constant's can be attaced by writing
 // 1'b0 = Logic 0
 // 1'b1 = Logic 1

 wire [4:1] C;
 // Since 21 dec. = 10101 binary we don't need FA's
 // where there are constant 0 inputs
 ha u0(.A(X[0]), .B(1'b1), .S(S[0]), .Cout(C[1]));
 ha u1(.A(X[1]), .B(C[1]), .S(S[1]), .Cout(C[2]));
 fa u2(.A(X[2]), .B(1'b1), .Cin(C[2]), .S(S[2]), .Cout(C[3]));
 ha u3(.A(X[3]), .B(C[3]), .S(S[3]), .Cout(C[4]));
 fa u4(.A(X[4]), .B(1'b1), .Cin(C[4]), .S(S[4]), .Cout(S[5]));

endmodule

 4

4. (20 pts.) Design a circuit that takes in four 4-bit unsigned numbers, A (A3..A0), B

(B3..B0), C (C3..C0), and D (D3..D0) and produces the 6-bit unsigned sum of those

numbers. You may use any number of 4-bit adder blocks (74LS283’s), single-bit full

adders or half adders that we have studied in class. You should organize your adder

circuits to perform as many additions in parallel (at the same time) as possible.

ANSWER:

First we will perform two additions in parallel (A+B) and (C+D). Later we add the results

of these two additions with another 4-bit adder. One of the carries is attached to this

second level adder. The remaining carry from level I and the newly created carry from

level II can be added by a half-adder. The result of these carries affects only the higher

bits thus it does not affect the lower bits.

B3 B2 B1 B0 A3 A2 A1 A0

S0S1S2S3

C0C4 4-bit Binary Adder

A0A1A2A3

T4

B0B1B2B3

T0T1T2T3

0

B3 B2 B1 B0 A3 A2 A1 A0

S0S1S2S3

C0C4 4-bit Binary Adder

C0C1C2C3

R4

D0D1D2D3

R0R1R2R3

0

B3 B2 B1 B0 A3 A2 A1 A0

S0S1S2S3

C0C4 4-bit Binary Adder

T0T1T2T3T4 R0R1R2R3

S0S1S2S3

0

X Y

S

Cin

Full Adder
Cout

R4

S4S5

Note: In the Verilog below we name rename T and R to T1 and T2 as well as different

names for the carries
module hw4_q4(
 input [3:0] A,
 input [3:0] B,
 input [3:0] C,
 input [3:0] D,
 output [5:0] F
);

 // You may attach bit slices of a signal/output to another module by simply
 // writing signal[x:y]. For example if a module outputs 3-bits that we
 // want to drive the lower 3-bits of a 5-bit signal F, we could connect
 // only F[2:0] to the output of that module. Then another module or gates
 // could drive F[5], F[4], F[3]
 wire [3:0] T1;
 wire [3:0] T2;
 wire CA, CB, CC;

 adder4 u0(.A(A), .B(B), .C0(1'b0), .S(T1), .C4(CA));
 adder4 u1(.A(C), .B(D), .C0(1'b0), .S(T2), .C4(CB));
 adder4 u2(.A(T1), .B(T2), .C0(1'b0), .S(F[3:0]), .C4(CC));
 fa u3(.A(CA), .B(CB), .Cin(CC), .S(F[4]), .Cout(F[5]));
endmodule

 5

5.

1111

CLK

RST

CE

PE

P3-P0

Q3-Q0 0000 0001 0101 0110

TC

0101

1110

6.

CLK

CLR

EN

1001D[3:0] 0010 11010011 01011111 01101010 0001

Q[3:0] 00001001 1111 10100101 0110

