
9.1

CS356 Unit 9

Virtual Memory & Address

Translation

9.2

Indirection

• Indirection means using one entity to _________________

• Examples:

– A variable name vs. it's ____________________________

– _______________ vs. cell tower location/phone ID

– Titles like "CEO" or "head coach" are virtual titles that can be applied

to different people at different times

• The benefits are we can change one without changing the

other

– We can change the underlying implementation without changing the

higher level task. For example, a job description would read "The CEO

shall perform this duty or that." and it need not be changed if the

company replaces John Doe with Jane Doe.

• "All problems in computer science can be solved by another

level of indirection" – attributed to David Wheeler

9.3

Virtual Memory & Address Translation

• We are going to indirect the addresses used by computer programs

• Primary Idea = Compile the program with __________________addresses

and have a _______________ convert these to physical addresses as the

program runs (this is Address Translation)

– Efficiently ____________ the physical memory between several running

programs/processes and provide ________________ from accessing each

others' information

• Secondary Idea = Use main memory (MM) as a "____________" for multiple

programs' data as they run, using ________________________ as the home

location (this is Virtual Memory)

– Remove the need of the programmer to know how much memory is physically

present and/or give the illusion of ________________ physical memory than is

present

• These ideas are often used interchangeably

9.4

Benefits of Address Translation

• What is enabled through virtual memory and address

translation?

– Illusion of more or less memory than physically present

– Isolation

– *Controlled sharing of code or data

– *Efficient I/O (memory-mapped files)

– *Dynamic allocation (Heap / Stack growth)

– *Process migration

• *Will be discussed in a subsequent unit or Operating

Systems class

9.5

Memory Hierarchy & Caching

• Lower levels act as a cache for upper levels

Disk / Secondary Storage

~1-10 ms

Main Memory

~ 100 ns

L2 Cache

~ 10ns

L1 Cache

~ 1ns

Registers

L1/L2 is a

“cache” for

main memory

Virtual memory

provides each

process its own

address space in

secondary storage

and uses main

memory as a cache
This Photo by Unknown Author is licensed under CC BY-SA

9.6

Secondary Storage: Magnetic Disks

• Magnetic hard drive consists of

– Double sided surfaces/platters (with R/W head)

– Each platter is divided into concentric tracks of small sectors that each store

several thousand bits

• Performance is slow primarily due to moving __________________

Surfaces

Read/Write Head 0

Read/Write Head 7

Read/Write Head 1

…

Track 0

Track 1

Sector 0

Sector 1

Sector 2

• Seek Time: Time needed to

position the read-head above

the proper track

• Rotational delay: Time needed

to bring the right sector under

the read-head

• Depends on rotation

speed (e.g. 5400 RPM)

• Transfer Time:

• Disk Controller Overhead:

0.1 ms

+ 2.0 ms

~20 ms

9.7

Secondary Storage: Flash

• Flash (_____________) drives store bits

using special transistors that retain their

values even when power is turned off

• Performance is higher than magnetic

disks but still slower comparted to main

memory

– Better sequential read throughput

• HD (Magnetic): 122-204 MB/s

• SSD: 210-270 MB/s

– MUCH better random read

• Max latency for single read/write: 75us

• When many requests present we can overlap and

achieve latency of around 26us (1/38500)

• Flash drives "____________" after

some number of writes/erasures

OS:PP 2nd Ed. Fig. 12.6

Intel 710 SSD specs.

9.8

Address Spaces

• Physical address spaces corresponds

to the actual system address ______

(based on the ________ of the

address bus) of the processor and

how much main memory is physically

present

• Each process/program runs in its own

private "virtual" address space

– Virtual address space can be larger

(or smaller) than physical memory

– Virtual address spaces are

____________ from each other

32-bit Physical

Address Space w/

only 1 GB of Mem

0x00000000

0xffff ffff

Mem.

I/O

Not

used

0x3fffffff

Not

used

0x80000000

0xbfffffff

Code
0x00000000

0xffff ffff

32-bit Fictitious Virtual

Address Spaces

(> 1GB Mem)

Mapped

I/O

-

Program/Process

1,2,3,…

-

Data

-

Heap

-

Stack

-

0xc0000000

0x10000000

9.9

Processes

• Process

– (def 1.) __________________________

• (Virtual) Address Space = Protected view of memory

• 1 or more threads

– (def 2.) : Running __________________ that has

• Memory is protected: Address translation (VM) ensures no

access to any other processes' memory

• I/O is protected: Processes execute in user-mode (not

kernel mode) which generally means direct I/O access is

disallowed instead requiring system calls into the kernel

• OS Kernel is not considered a "process"

– Has access to all resources and much of its code is

invoked under the execution of a user process thread

Code
0x00000000

0xffff ffff

Address Spaces

Mapped

I/O

-

Program/Process

1,2,3,…

-

Data

-

Heap

-

Stack

-

0xc0000000

0x10000000

= Thread

9.10

Virtual Address Spaces (VAS)

• Virtual address spaces

(VASs) are broken into

blocks called "________"

• Depending on the

program, much of the

virtual address space will

be __________

• Pages can be allocated

"___________" (i.e. when

the stack grows, etc.)

• All allocated pages can be

stored in secondary

storage (hard drive)

0

1

2

3

Unalloc

0

1

2

Unalloc

Secondary

Storage

…

Unalloc

…

0

1

2

3

0

1

2

Used/Unused Blocks in

Virtual Address Space

Code
0x00000000

0xffff ffff

Mapped

I/O

-

Program/Process

1,2,3,…

-

Data

-

Heap

-

Stack

-

0xc0000000

0x10000000

0 - Code

1 - Code

2 - Data

4 - Heap

…

3 - Stack

0 - Code

1 - Code

2 - Data

4 - Heap

3 - Stack

9.11

0

1

2

3

Unalloc

0

1

2

Unalloc

…

Unalloc

…

0

1

2

3

0

1

2

0 - Code

1 - Code

2 - Data

4 - Heap

…

3 - Stack

0 - Code

1 - Code

2 - Data

4 - Heap

3 - Stack

Physical Address Space (PAS)

• Physical memory is broken into

page-size blocks called "_______"

• Multiple programs can be running

and their pages can _______ the

physical memory

• Physical memory acts as a ______

for pages with secondary storage

acting as the backing store (next

lower level in the hierarchy)

• A page can be:

– _______________ (not needed

yet…stack/heap)

– Allocated and residing in secondary

storage (_____________)

– Allocated and residing in main

memory (____________)

0x00000000

0x3fffffff

1GB Physical

Memory and

32-bit Address

Space

0xffffffff

Secondary

Storage
Fictitious Virtual

Address Spaces

frame

0-Code

Pg. 0

Pg. 2

2-Data

Pg. 0

frame

I/O

and

un-

used

area

9.12

Paging

• Virtual address space is divided into equal

size "pages" (often around 4KB)

• Physical memory is broken into page

frames (which can hold any page of virtual

memory and then be swapped for another

page)

• Virtual address spaces can be __________

while physical layout is not

Physical Frame of

memory can hold data

from any virtual page.

Since all pages are the

same size any page can

go in any frame (and be

swapped at our desire).

0x00000000

0x3fffffff
frame

0-Code

Pg. 0

Pg. 2

2-Data

Pg. 0

frame

I/O

and

un-

used

area

0xffffffff

Pg. 0

Pg. 1

Pg. 2

Pg. 3

unused

…

Pg. 0

Pg. 1

Pg. 2

unused

unused

…

Phys. Addr.

Space

Proc. 1 VAS Proc. 2 VAS

9.13

Virtual vs. Physical Addresses

• Key: Programs are written using virtual

addresses

• HW & the OS will __________ the virtual

addresses used by the program to the

physical address where that page resides

• If an attempt is made to access a page

that is not in physical memory, ____

generates a "__________ exception" and

the OS is invoked to bring in the page to

physical memory (possibly evicting

another page)

• Notice: Virtual addresses are not ______

– Each program/process has VA: 0x00000000

Translation Unit /
MMU

(Mem. Mgmt. Unit)

Proc.
Core

Memory

Data

PA: 0x0

PA:0x3fffffff
frame

0-Code

Physical

Memory and

Address Space

Pg. 0

Pg. 2

2-Data

Pg. 0

frame

I/O

and

un-

used

area

0xffffffff

Secondary

Storage

Fictitious Virtual

Address Spaces

0

1

2

3

Unalloc

0

1

2

Unalloc

…

Unalloc

…

0

1

2

3

0

1

2

0 - Code

1 - Code

2 - Data

4 - Heap

…

3 - Stack0 - Code

1 - Code

2 - Data

4 - Heap

3 - Stack

PA: 0x11f000

PA: 0x21b000

VA: 0x040000

VA: 0x100080

Virtual
Addr

Physical
Addr

9.14

Summary
• Program takes an abstract (virtual) view of

memory and uses virtual addresses and

necessary data is broken into large chunks

called pages

• HW and OS work together to bring pages into

main memory acting as a cache and allowing

sharing

• HW and OS work together to perform

translation between:

– Virtual address: Address used by the process

(programmer)

– Physical address: Physical memory location of

the desired data

• Translation allows protection against other

programs

Translation Unit /
MMU

(Mem. Mgmt. Unit)

Proc.
Core

Virtual
Addr

Memory

Physical
Addr

Data

PA: 0x0

PA:0x3fffffff
frame

0-Code

Physical

Memory and

Address Space

Pg. 0

Pg. 2

2-Data

Pg. 0

frame

I/O

and

un-

used

area

0xffffffff

Secondary

Storage

Fictitious Virtual

Address Spaces

0

1

2

3

Unalloc

0

1

2

Unalloc

…

Unalloc

…

0

1

2

3

0

1

2

0 - Code

1 - Code

2 - Data

4 - Heap

…

3 - Stack0 - Code

1 - Code

2 - Data

4 - Heap

3 - Stack

PA: 0x11f000

PA: 0x21b000

VA: 0x040000

VA: 0x100080

9.15

VM Design Implications

• SLOW secondary storage access on page faults (100us - 10ms)

– Implies page size should be fairly _______ (i.e. once we’ve taken

the time to find data on disk, make it worthwhile by accessing a

reasonably large amount of data)

– Implies the placement of pages in main memory should be

___________________ to reduce conflicts and maximize page

hit rates

– Implies a "page fault" is going to take so much time to even

access the data that we can handle them in _________ (via an

exception) rather than using _____ like typical cache misses

– Implies we should use a ____________ policy for pages (since

_______________ would be too expensive)

9.16

ADDRESS TRANSLATION

Page Tables

9.17

Page Size and Address Translation

• Since pages are usually retrieved from disk, we size them to be fairly large

(several KB) to amortize the large access time

• Virtual page number to physical page frame translation performed by HW

unit = ____________ (Mem. Management Unit)

• _______________ is an in-memory data structure that the HW MMU will use

to look up translations from VPN to PPFN

Offset within pageVirtual Address Virtual Page Number

31 12 11 0

Offset within pagePhysical Address
Phys. Page Frame

Number

31 30 12 11 0

00

Copied

12

Translation
Process
(MMU +

Page Table)

29

20

18

0 0 0 4 0 0 0 0

0 0 2 1 b 0 0 0

Lookup VPN 0x00040
to it lives in PPFN: 0x0021b

9.18

Address Translation Issues
• We want to take advantage of all the physical memory so page placement

should be fully associative

– For 1GB of physical memory, a 4KB page can be anywhere in the _________ page frames

• We could potentially track the contents of physical memory using similar

techniques to cache

– TAG = VPN that is currently stored in the frame

– This would be _______________ tags to check

• Instead, most systems implement full associativity using a look-up table =

PAGE TABLE

Frame 2

Frame 1

Frame 0

…

Frame

218-1

VPN

Tag (VPN)V M

Page Frame #

Tag (VPN)V M

Tag (VPN)V M

…

Tag (VPN)V M

218-1

2

1

0

Virtual Address

offset

=

=

=

=

=

Physical Memory

Processor

9.19

Analogy for Page Tables

• Suppose we want to build a caller-ID mechanism for your

contacts on your cell phone

– Let us assume 1000 contacts represented by a 3-digit integer (0-999) in

the cell phone (this ID can be used to look up their names)

– We want to use a simple array (or Look-Up Table (LUT)) to translate

phone numbers to contact ID’s, how shall we organize/index our LUT

213-745-9823

LUT indexed w/

contact ID

000

LUT indexed w/ all

possible phone #’s

626-454-9985

…

323-823-7104

818-329-1980

001

002

999

null000-000-0000

..

…

null

000213-745-9823

999-999-9999

Sorted LUT indexed

w/ used phone #’s

436

213-745-9823 000

…

002

999323-823-7104

213-730-2198

818-329-1980

O(__) - __________ Work

We are given phone # and

need to translate to ID

(________ accesses)

O(_____) - ________ Work

Since its in sorted order we

could use a binary search

(________ accesses)

O(_) - ________ Work

Easy to index & find but

(__ access)

1 2 3

…

9.20

Page Tables
• VA is broken into:

– VPN (upper bits) + Page offset: Based on page size (i.e. 0 to 4K-1 for 4KB page)

• MMU uses VPN & _______ to access the page table in memory and lookup physical

frame (i.e. like an array access where VPN is the index: PTBR[VPN])

– Each entry is referred to as a ____________________ (PTE) and holds the physical frame

number & bookkeeping info

• Physical frame is combined with offset to form physical address

• For 20-bit VPN, how big is the page table? (See below)

VAOffset w/in pageVirtual Page Number

31 12 11 0

Page Table Size

= ____ entries * ___ bits

= approx. _____bytes = ___

PTBR = Page Table Base Reg.

Offset w/in page PAPhys. Frame #

31 12 11 0

00

PTE

Page Frame Number

PTE

…

Other
flags

20

Page Table in Main Memory

18

Processor
0xc0008000

0xc0008000

PTBR[2]

PTBR[1]

PTBR[0]

…

0x0021b

0x0021b 0x00002 0x2d8

0x2d8

9.21

Page Table Example

• Suppose a system with 8-bit VAs, 10-bit PAs, and 32-byte pages.

VPN P1-VAS

0

1

2

3

4

5

6

7Page Table

VA

OffsetVPN

7 0

Offset

PA

PFN

4 0

4

9

Page
Table

0x00

0x1F

0x20

0x3F
0x40

0x5F

0xE0

0xFF

PFN Phys Mem

0 VP 3

1

2 VP 1

3

PT for P1

(OS Owns)

31 VP 5

0x000

0x01F

0x020

0x03F
0x040

0x05F

0x3E0

0x3FF

V Entry

0 0 0x1a

1 1 0x02

2 1 0x18

3 1 0x00

4 0 0x10

5 1 0x1F

6 0 0x15

7 0 0x0A

9.22

Page Table Exercise

• Suppose a system with 8-bit VAs, 10-bit

PAs, and 32-byte pages.

• Fill in the table below showing the

corresponding physical or virtual address

based on the other. If no translation can

be made, indicate "INVALID"

V Entry

0 0 0x0E

1 1 0x1E

2 1 0x16

3 1 0x06

4 0 0x0B

5 1 0x1F

6 0 0x15

7 0 0x0A

Page Table

VA PA

0x2D = 0010 1101

0x0DA=0011011010

0xEF = 1110 1111

0xA8 = 1010 1000

VAOffsetVPN

7 0

Offset PAPFN

4 0

4

9

Page
Table

9.23

Paging
• Each process has ________ virtual

address space and thus needs its own

• On context switch to new process,

reload the PTBR using info in the GDT

– GDT = Global Descriptor Table (Intel x86

prescribed structure to hold info about

each program)

– CR3 = Control Register 3

(x86 register to hold base

address of page table)

rsp

VA: 0x001040rbx

VA: 0x002eacrip

rax

Translation Unit / MMU

+

PA: 0x6e040

P
h

y
s
ic

a
l

A
d

d
r

Virtual Addrs

unused

VPN offset

Code 2.1

PT1

GDT

0xc4000PTBR/CR3

0xc4000

0xd0000

PT2

0x3d000 R/W

Phys. Frame # R/W

0xa1000 R/W

0xb4000 R

0

1

2

0x6e000

Process 2 Page Table

Process 1

VPN

0x7e000 R/W

Phys. Frame # R/W

0x6e000 R/W

0x08000 R

Stack 2.1

Data 1.1

Stack 1.1

Code 1.2

Data 2.1

Code1.1

0

1

2

VPN

offs: 0x040

PPFN: 0x6e000

0x08000

0x002 0xeac

0x001 0x040

offs: 0xeac

PA: 0x08eac

PPFN: 0x08000

Physical Addr

Process 1 Page Table

O
S

 (
"K

e
rn

e
l"

)
M

e
m

o
ry

P
h

y
s

ic
a

l
M

e
m

o
ry

 f
o

r
P

a
g

in
g

9.24

Page Table Entries (PTEs)
• Usually fits within a 32-bit (4-byte) or 64-bit (8-byte) value:

– Valid bit (1 = desired page in memory / 0 = page not present / page fault)

– Modified/Dirty

– Referenced = To implement ____________________

– Protection: ____________________

• For 32-bit VA, 1 GB phys. memory, and

4KB pages how many bits do we need for

the frame number?

– 1GB = ___ phys. addr. bits; 4KB => ___ offset bits

– Thus we need _____ = ___ bits for the frame number

Valid / Present

Modified / Dirty

Referenced

Protection

Cacheable

Page Frame Number

9.25

Multi-level Page Table Concept
• Much of the VAS is often unused (gray areas in the image on the right)

which implies many of the page table entries would be unused

• Can we reduce the page table size and still do a lookup in ________ time?

– Do you have friends from every _______________?

– Likely contacts are clustered in only a few.

• Use a 2-level organization

– 1st level LUT is indexed on __________ and contains pointers to 2nd level tables

– 2nd level LUT’s indexed on local phone numbers and contains contact ID entries

• The first level is often called the page directory and while the 2nd level is

the called page tables

– PDE's (Page Directory Entries) contain pointers to 2nd level Page Tables

LUT indexed w/ all

possible phone #’s

null

…

…

000

213

323

1st Level Index = ________
(Page Directory)

null000-000-0000

..

…

null

000213-745-9823

999-999-9999 …

213

Table

2nd Level Index = Local Phone #

000-0000

999-9999

323

Table

000-0000

999-9999

If only 2 area

codes used

then only

_____ + _____

entries rather

than _____

entries

9.26

Analogy for Page Tables

• Could extend to 3 levels if desired

– 1st Level: Indices are area codes and values are pointers to 2nd level tables

– 2nd Level: Indices are first 3-digits of local phone and values are pointers to 3rd level tables

– 3rd Level: Indices are last 4-digits of local phone and values are contact ID’s (i.e. Translations)

null

…

…

000

213

323

1st Level Index =

Area Code

Area Code

…

2nd Level Index =

Local Phone #

000

999

000

999

323

Table

213

Table

null

null

740

821

null

null

3rd Level Index =

Local Phone #

0000

9999

213-740

Table

null

003

null

9823

0000

9999

323-821

Table

null

248

null

7104

9.27

Multi-level Page Tables
• Think of a multi-level page table as a ________

– Internal nodes contain __________ to other page tables

– Leaves hold actual _____________

0x40 0x0400x35

Virtual
Addr

VPN

offsetIdx1 Idx2
7 bits 7 bits 12 bits

0xd0000

PDBR/CR3

… …

0x3f

6 bits
Idx3

[0x40]

PT2[] = start addr

PD start addr

[0x3f]

[0x35]

PT3[] = start addr

Level 1

Level 2

Level 3

Phys. Frame Addr

Translations live

in this level

Processor

• Unused entries in one

level mean no table at

the next (saving space)

Page Directory

9.28

SPARC Processor VM Implementation

Offset w/in pageIndex 1

8 11 06

Index 2Process ID Index 3

6

0

4095

MMU hold 4096 entry table

(one entry per

context/process)

[Essentially, PTBR for each

process]

Context Table
First

Level Second

Level Third

Level 4K

Page

Desired

word

PPFN

28 * 4

bytes 26 * 4

bytes 26 * 4

bytes

How many accesses to memory does it take to get the

desired word that corresponds to the given virtual address?

Would that change for a 1- or 2- level table?

Virtual Address:

9.29

Analogy for Page Tables

• If we add a friend from area code 408 we would have to add a second and

third level table for just this entry.

• If we had 1 friend from every area code and every 3-digit local prefix, would

this scheme save us any storage? No!

null

…

…

000

213

323

1st Level Index =

Area Code

Area Code

…

2nd Level Index =

Local Phone #

000

999

000

999

323

Table

213

Table

null

null

740

821

null

null

3rd Level Index =

Local Phone #

0000

9999

213-740

Table

null

003

null

9823

0000

9999

323-821

Table

null

248

null

7104

9.30

Page Faults

Uncached Page

Uncached Page

Uncached Page
Uncached Page
Uncached Page

Uncached Page

0

1

2

1023

0

1

2

1023

0

1

2

1023

0

1

2

1023

Offset w/in page
Level

Index 1

31 12 11 022 21

Level
Index 2

1010

Pointer to start of

2nd Level Table

PPFN’s

frame

I/O

and

un-

used

area

frame 0x0

When HW encounters a PTE whose page is not in physical

memory, it will generate a page fault exception and the OS will

take over and retrieve the page before resuming the program.

9.31

Page Fault Steps

• What happens when you reference a page that is not present?

• HW will…

– Record the offending address and generate a page fault exception

• SW (the OS) will…

– Pick an empty frame or ______________________

– Writeback the evicted page if it has been _________

• May block process while waiting and ________________

– Bring in the desired page and ___________________

• May block process while waiting and ________________

– Restart the offending instruction

• Key Idea: Handler can bring in the page or do anything

appropriate to handle the page fault

– Allocate a new page, zero it out, retrieve from secondary storage, etc.

9.32

Page Replacement Policies

• Possible algorithms: LRU, FIFO, Random

• Since page misses are so costly (slow) we can afford to spend sometime

keeping statistics to implement pseudo-LRU

• HW will implement simple mechanism that allows SW to implement a

pseudo-LRU algorithm

– HW will set the “________________” bit when a page is used

– At certain intervals, SW will use these reference bits to keep statistics on which

pages have been used in that interval and then ________ the reference bits

– On replacement, these statistics can be used to find the pseudo-LRU page

• Other simpler replacement algorithms (e.g. variants of the clock algorithm)

might also be used

9.33

Cache & VM Comparison

Cache Virtual Memory

Block Size 16-64B 4 KB – 64 MB

Mapping Schemes ___________________ __________________

Miss handling and

replacement

______ ______

Replacement Policy Full LRU if low associativity

/ Random is also used

Pseudo-LRU can be

implemented

9.34

Inverted Page Tables
• Page tables may seem expensive in terms of memory

overhead

– Though they really aren't that big

• One option to consider is an "inverted" page table

– One entry per physical frame

– Hash the virtual address and whatever results is where that page must

reside

• What about collisions?

– Becomes hard to maintain in hardware, but can be used by secondary

software structures

213-745-9823

LUT indexed w/

contact ID

000

626-454-9985

…

323-823-7104

818-329-1980

001

002

999

626-454-9985

Hash
func.

9.35

TLB (TRANSLATION LOOKASIDE

BUFFERS)

Achieving faster translations…

9.36

Page Table Performance

• How many accesses to memory does it take to get the desired word that

corresponds to the given virtual address?

• So for each needed memory access, we need _____ additional?

– That sounds BAD!

• Would that change for a 1- or 3- level table?

• M-level page table may require _____ memory accesses to find the

translation…EXPENSIVE!!

Offset w/in pageIndex 1

10 11 06

Index 2PDR

First Level
(Page Directory)

Second
Level 4K

Page

Desired

word

PPFN

210 * 4

bytes
210 * 4

bytes

Virtual Address

9.37

Translation Unit / MMU

Translation Lookaside Buffer (TLB)

• Solution: Let’s create a ______ for translations = Translation

Lookaside Buffer (TLB)

• Needs to be small (64-128 entries) so it can be ______, with high degree

of associativity (at least 4-way and many times fully associative) to avoid

conflicts

– On hit, the PPFN is produced and concatenated with the offset

– On miss, a ____________________ is needed

TLB

I or D

Cache
CPU

VA

VPN

Page Offset

PPFN

PA data10 ns

10 ns

Memory

Memory

(Page Table)

Hit

M
is

s

M
is

s

Hit

Processor

9.38

Translation Lookaside Buffer (TLB)

• T(Translation): T(TLB lookup) + (1-P(TLB hit)) * T(PT Walk)

• What is P(TLB hit)?

– Suppose 4KB page size and that we are walking an array of integers in sequential

order

– What fraction of accesses will be misses in the TLB?

– __

• Below is a fully associative TLB diagram

Offset w/in page Virtual AddressVirtual Page Number

31 12 11 0

Page Frame #

0x308ac

Offset w/in page
Physical Address

Phys. Frame #

31 12 11 0

V D

0x7ffe1

Tag = VPN

=

=

=

=

Fully Associative TLB

(Entry can be anywhere
and thus we must check
all locations in TLB for a
hit)

20

12

TLB

7 f f e 1 6 d 8

3 0 8 a c 6 d 8

9.39

A 4-Way Set Associative TLB

• 64 entry 4-way SA TLB (set field indexes each “way”)

– On hit, page frame # supplied quickly w/o page table access

Offset w/in page Virtual AddressVPN

31 12 11 0

Offset w/in page Physical AddressPhys. Frame #

31 12 11 0

SetTag

308ac7ffe

Tag PF# Tag PF#Tag PF# Tag PF#

= = = =

Way 1Way 0 Way 2 Way 3
__

__

7 f f e 1 6 d 8

3 0 8 a c 6 d 8

7 f f e 1

9.40

TLB + Data Cache

Offset w/in page Virtual AddressVirtual Page Number

31 12 11 0

Page Frame #

Offset w/in page Physical AddressPhys. Frame #

31 12 11 0

V MTag = VPN

=

=

=

=

TLB

Fully

Direct

Set-Assoc.

20

12

Phys. Tag Index
Byte

Offset

Data Data Data DataTagV

=Hit

Desired Data

1416

TLB

Data Cache

Fully

Direct

Set-Assoc.

MMU

Cache

If data cache is tagged with _________ addresses, then we must

translate the VA _________ we can access the data cache.

9.41

Differences of TLB & Data Cache

• Data cache

– 1 tag (to identify the block) corresponds to __________________

• TLB

– 1 tag (VPN) corresponds to ________________________

• Main Point: TLBs are _________ than normal data caches and

faster to access

TLB
(1 tag = 1 translation. No Offset needed)

Instruc./Data Cache
(Offset needed since one tag corresponds to many values)

9.42

TLB Exercise

• This TLB is 2-way set

associative, with 4 sets

• Page sizes are 256 bytes and

16-bit VAs and PAs

• What is the physical address of

virtual address 0x7E85?

• What is the virtual address of

physical address 0x3020?

Index V Tag PPFN

0 0 0x13 0x30

1 0x34 0x58

1 0 0x1F 0x80

1 0x2A 0x30

2 1 0x1F 0x95

1 0x20 0xAA

3 1 0x3F 0x20

0 0x3E 0xFF

TLB

9.43

Processor Chip

Translation Unit / MMU

Page Fault Steps

• On page fault, handler will access

disk to evict old page (if dirty) and to

bring in desired page

– Likely context switch on each access

since disk is slow

• Make sure PT & TLB are updated

appropriately

TLB

CacheCPU
VA

VPN

Page Offset

PPFN

PA

data

10 ns

M
is

s

M
is

s

Hit

VA

Miss

Invalid /

Not Present

OS Exception

(Page Fault)

Handler

Memory

1

2

3

3

4

3. Evict (writeback) page if no
frame free (update PT & TLB)
4. then bring in needed page
and update PT

4

5 Restart faulting
instruction

3

4
Page Table

4

3

Disk Driver

(Interrupt)

6 TLB Miss / PT
walk / Update TLB

6

9.44

Page Eviction Bookkeeping

• When we want to remove a page from memory

– Data/instruction cache

• Writeback any modified blocks belonging to that page

• Invalidate (set V=0) all blocks belonging to that page

– TLB (check if a translation for that page is even in the TLB), if so…

• If Modified/Dirty bit is set for that translation, set modified bit in the page table

• Invalidate (V=0) the translation

– Writeback page to disk if modified/dirty bit in Page Table entry is set

– Update Page Table Entry to indicate the page is not present in memory

anymore

– Simple way to remember this…

• Children (cache & TLB entries related to a page) must leave when the parent

(the actual page) leaves

• Bring in new page and update page directory/page table

9.45

Cache, VM, and Main Memory
TLB VM Cache Possible Y/N & Description

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss Miss

Hit Miss Hit

Miss Miss Hit

Taken from H & P, “Computer Organization” 3rd, Ed.

9.46

x86 HW Cache/VM Support

• Cache and TLB Configuration

Processor Package

Shared L3 Cache
(8MB, 16-way)

QuickPath Interconnect

DDR3 Memory controller

Core x4

Registers

L1 D$
(32KB, 8-way)

L2 Unified $
(256KB, 8-way)Instr. Fetch L1 I$

(32KB, 8-way)

L1 iTLB
(64 entry, 4-way)

L1 dTLB
(128 entry, 4-way) L2 Unified TLB

(512 entry, 4-way)
MMU

Main Memory

I/O Bridge

Intel CoreTM i7 Memory System

CR3/

PDBR

9.47

CoreTM i7 Page Table & Entries Format

• Specs: 48-bit VA, 52-bit PA, 4KB pages, 4-level Page Table

Level 1 (9-bits) Level 2 (9-bits) Level 3 (9-bits) Level 4 (9-bits) Page Offset (12-bits)

CR3

L1 PTEL1 PTE

L2 PTEL2 PTE

L3 PTEL3 PTE

L4 PTEL4 PTE

Physical Page Number (40-bits) Page Offset (12-bits)

L1 PT

(Page Global

Directory)

L2 PT

(Page Upper

Directory)

L3 PT

(Page Middle

Directory)

L4 PT

(Page Table)

512 GB

range per PTE
1 GB

range per PTE
2 MB

range per PTE

4 KB

range per PTE

XD unused Physical Page number unusedunused G unused D A CD WT U/S
R/

W

R/

W
P=1

6363 62-5262-52 51 1251 12 11 911 9 88 77 66 55 44 33 22 11 00

x86 Processor
Core

L4 PTEL4 PTE
PTE

Format

XD (Execute Disable), G (Global Page), D (Dirty Bit), A (Referenced Bit), CD (Caching Disabled), WT (Write-Thru/WriteBack),

U/S (User or Supervisor (Kernel) Mode Permission, R/W (Read-only or Read-write), P (Present/Valid). If P=0, all 63 other

bits may be used as the OS desires to store information about the page (i.e. disk location, etc.)

9.48

Multiple Processes
• On a process context switch can TLB keep its entries?

– Can TLB share mappings from multiple processes? ___________________________

• Recall each process has its _____ virtual address space, page table, and

translations

– Virtual addresses are _______________ between processes

• How does TLB handle context switch

– Can choose to only hold translations for current process and thus _________ all

entries on _________________________

– Can hold translations for multiple processes concurrently by concatenating a

__ to the VPN tag

Offset VAVPN

31 12 11 0

________ for

each process

Page Frame # V MTag

=

=

=

=

ASID

9.49

Shared Memory

• In current system, all memory is

___________ to each process

• To share memory between two

processes, the OS can allocate

an entry in each process’ page

table to point to the _______

physical page

• Can use different protection

bits for each page table entry

(e.g. P1 can be R/W while P2

can be read only)

0

1

2

3

0

1

2

…

…

0

1

2

…
Physical

Memory

Virtual Address

Spaces

P1

P2
Shared phys. page

VA: 0x040000

VA: 0x2c8000

9.50

IF TIME PERMITS

Overlapping TLB access with Data/Instruction Cache access

9.51

Cache Addressing with VM

• Review of cache

– Store copies of data indexed based on the address

they came from in MM

– Simplified view: 2 steps to determine hit

• Index: Hash portion of address to find "set" to look in

• Tag match: Compare remaining address to all

entries in set to determine hit

– Sequential connection between indexing these two

steps (index + tag match)

• Rather than waiting for address translation and

then performing this two step hit process, can we

overlap the translation and portions of the hit

sequence?

– Yes if we choose page size, block size, and

set/direct mapping carefully

0

1

2

3

4

…

addr, data addr, data

Index/HashTag Offset

Address

9.52

Virtual vs. Physical Addressed Cache

• Physically indexed, physically tagged (PIPT)

– Wait for full address translation

– Then use physical address for both indexing and

tag comparison

• Virtually indexed, physically tagged (VIPT)

– Use portion of the virtual address for indexing

then wait for address translation and use physical

address for tag comparisons

– Easiest when index portion of virtual address

w/in offset (page size) address bits, otherwise

aliasing may occur

• Virtually indexed, virtually tagged (VIVT)

– Use virtual address for both indexing and

tagging…No TLB access unless cache miss

– Requires invalidation of cache lines on context

switch or use of process ID as part of tags

Offset VAVPN

31 12 11 0

Offset PAPFN

31 12 11 0

Set/BlkTagP
IP

T

Offset VAVPN

31 12 11 0

Offset PAPFN

31 12 11 0

Tag

Set/Blk

Offset VAVPN

31 12 11 0

Offset PAPFN

31 12 11 0

Set/BlkTag

V
IP

T
V

IV
T

9.53

Virtual vs. Physical Addressed Cache

• Another view:

Virtually addressed CacheVirtually addressed Cache Physically addressed CachePhysically addressed Cache

In a modern system the L1 caches may be virtually addressed while

L2 may be physically addressed.

9.54

EXERCISES

