CS356 Unit 8

Memory

Performance Metrics

e Latency: Total time for a single operation to complete
— Often hard to improve dramatically

— Example: Takes roughly 4 years to get your bachelor's
degree

— From perspective of an individual

* Throughput/Bandwidth: Average time per operation
— Usually much easier to improve by applying parallelism
— From perspective of the overall system

— Example: A university can graduate more students per
year by hiring more instructors or increasing class size

i, TS(“Viterbi @

School of Engineering

The Memory Wall

* Problem: The Memory Wall

— Processor speeds have been increasing much faster than
memory access speeds (Memory technology targets density
rather than speed)

. . . U
— Large memories yield large address decode and access times #

— Main memory is physically located on separate chips and
sending signals between chips takes a lot longer than on the

same chip
100’000 R

10,000 [F885sesmes e ormstas g oesseendesosone a ed a e /Q/o

1000 %/ PSS —
o Processor-Memory

100 O Performance Gap

Performance

10 - N

Hennessy and Patterson,
1 Computer Architecture —

O ANl Dok H O A DD O AT DXL PN RO XND DX AQuantitative Approach (2003)
AR DX DR R LSS PSS
272707 2707 W27 W T W W W W D R S D ©Elsevier Science

i, TS(“Viterbi

School of Engineering

Options for Improving Performance

* Focus on latency by improving the underlying technology

— Can we improve the physical design of the basic memory circuits (i.e. the
circuit that remembers a single bit) to create faster RAMSs?

e This is hard
— Can we integrate memories on the same chip as our processing logic?

* Focus on throughput by improving the architecture/organization

— Within a single memory, can we organize it in a more efficient manner to
improve throughput

* DRAM organization, DDR SDRAM, etc.

— Can we use a hierarchy of memories to make the most expensive
accesses far more rare

e Caching
— These are generally easier to do than latency improvements

— U5 Vitcrbi >
Principle of Locality

Program Code

funca:
* Most of the architectural improvements we vl 1, fedx
jmp .L2
make will seek to exploit the Principle of A la dede, T
. movl (%rdi,%rcx,4), %ecx
LOcaIIty ;Tzl ".Aigx, %eax
— Explains why caching with a hierarchy of memories .LBT::i ;1/ :
yields improvement gain = ye;i o
: : : 1 el
 Works in two dimensions ret
— Spatial Locality: If an item is referenced, items whose
addresses are nearby will tend to be referenced soon Arrays

* Examples: Arrays and program code
data[5] | @000 @002 |0x00214

— Temporal Locality: If an item is referenced, it will tend
to be referenced again soon

data[4] | @000 0001 |0x00210

data[3] | @900 @002 |oxee20c
* Examples: Loops, repeatedly called subroutines, data2]

setting a variable and then reusing it many times
* 90/10 rule: Analysis shows that usually 10% of the

written instructions account for 90% of the executed
instructions

0000 0001 |0x00208

data[1] | ©@@e 6062 0x00204

data[0] | 9000 0001 |0x00200

USC Viterbi

School of Engineering

Memory Hierarchy & Caching

* General approach is to use several levels of faster and faster
memory to hide delay of lower levels

e More
- Smaller . Faster
Expensive
Unit of Transfer: A A

Word or Byte

,,,,,,,,,,

Registers e
L1 Cache R L
~ 1ns ol s T SRR
: N | Umt of Transfer:
L2 Cache Cache block/line
1-8 words
Lower ~ 10ns (Take advantage of spatial

YRR R

Higher
Levels

Levels : locality)
Main Memory
~ 100 ns

Unit of Transfer:
Page
4KB-64KB words
(Take advantage of

Secondary Storage
~1-10 ms

spatial locality)
A\ 4

Less

. Slower
Expensive

Larger

http://images.google.com/imgres?imgurl=http://content.answers.com/main/content/wp/en/b/bc/DIMMs.jpg&imgrefurl=http://www.answers.com/topic/dimm&h=273&w=439&sz=36&hl=en&start=6&um=1&tbnid=5SVFjWQNFR3QuM:&tbnh=79&tbnw=127&prev=/images?q%3Ddimm%26ndsp%3D18%26um%3D1%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231%26sa%3DN
http://images.google.com/imgres?imgurl=http://www.pcguide.com/ref/hdd/z_ibm_ultrastar36zx.jpg&imgrefurl=http://www.pcguide.com/ref/hdd/index-c.html&h=437&w=398&sz=23&hl=en&start=4&tbnid=v5hBLvB3yy_E7M:&tbnh=126&tbnw=115&prev=/images?q%3Dhard%2Bdisk%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231

i, TS(“Viterbi D

School of Engineering

Hierarchy Access Time & Sizes

Cache Hit Cost Size
1st level cache/first level TLB 1ns 64 KB
2nd level cache/second level TLB 4ns 256KB
3rd level cache 12ns 2MB
Memory (DRAM) 100 ns 10GB
Data center memory (DRAM) 100us 100TB
Local non-volatile memory 100 s 100GB
Local disk 10ms 1TB
Data center disk 10ms 100PB
Remote data center disk 200 ms 1XB

MEMORY ORGANIZATION

i, TS(“Viterbi

School of Engineering

Memory Array

* Logical View = 1D array of rows (Dwords or Qwords)
— Already this is 2D because each qword is 64-bits (i.e. (64) 1-bit columns)

* Physical View = 2D array of rows and columns

— Each row may contain 1000’s of columns (bits) though we have to access
at least 8- (and often 16-, 32-, or 64-) bits at a time

C800 4DB2 2004 1023

CC31 5EEF 89AB 97CD

2830 FB50 AB49 82FE

0001 ACDE 1234 89AB

1D Logical View
(Each row is a single
gword = 64-bits)

0x0018
0x0010
0x0008
0x0000

0x000800
0x000400
0x000000

2D Physical View

B (e.g. arow is 1KB = 8Kb)

While the programmer can
keep their view of a linear
(1D) address space, the
hardware will translate the
address into several indices
(row, column, etc.) by
splitting the address bits
into fields

Analogy: When you check
into a hotel you receive 1
number but portions of the
number represent multiple
dimensions (e.g. 612)

— Floor: 6

— Aisle: 1

— Room: 2

Core {7+ |
J

System Bus

USC Viterbi

School of Engineering

Translating Addresses to 2D Indices

_ _ r-PhysicaI Address / Data bus)
(Physical width Lwidth may be smaller/larger. »
TR Varies) T N I N N B S S . |

~o
~
~
~
~
~
~
~
~
~,
~a

0x0000000410 2 1 0= col
5 A a >
1-byte
@ 40 Values
8 D Y, row|2 Ox000800
o 64 > rqw|1 j 0x000400
raw|0 OXxX000000
Physical] View of Memory
Rank/Bank Row Col
0000 0000000001 0000010000 = 0x000410
"-----------------\

’--

* Each cell represent an 8-bit byte
* Address broken into fields to identify
row/col/etc. (i.e. higher dimension indices)

—-----------------l

Main memory organization

DRAM TECHNOLOGIES

USC Viterbi @2

School of Engineering

Memory Chip Organization

Memory technologies share the
same layout but differ in their
cell implementation

— SRAM

— DRAM

Memories require the row bits
be sent first and are used to
select one row (aka "word line")

— Uses a hardware component
known as a decoder

All cells in the selected row
access their data bits and
output them on their respective
"bit line"

The column address is sent next
and used to select the desired

8 bit lines (i.e. 1 byte)

— Uses a hardware component
known as a mux

1K Bit Lines
__Bl BL[1023]
1 |25
Cell -~ Cell
$ t
10-bits
S >
o Row
S 2 | Addr| p [WH _
S 2 % :| SRAM and DRAM differ
o (@) : in how each cell is
— S ((.’8 : made, but the :
8 — :| organization is roughly :
- = g the same :
= — : :
S |° [0 e 0
=Xe) . Cell 1 Cell
= WL[1023] 5
o & 5 5 5
- : : >
8 v v
» Amplifiers & Column Mux
Column

Addr EEEEEEE)
Data[7:0] in/out

i, TS(“Viterbi @33

SRAM vs. DRAM = Aot

WL 1
Transistor actind as
. . ——/aswitch
* Dynamic RAM (DRAM) Cells (store 1 bit) ﬂ S
. . . . '= 5V I charges to
— Will lose values if not refreshed periodically =0 =
every few milliseconds [i.e. dynamic]
— Extremely small (1 Transistor & a capacitor)
* Means we can have very high density (GB of BL
RAM)
. . . . WL 0
— Small circuits require more time to access the Transistor s now
. —L_ 7 off trapping charge
b |t) oh capacitor
Capacitor
 SLOW maintains
. ; 5Vchtarge
— Used for main memory
e Static RAM (SRAM) Cells (store 1 bit)

— Will retain values as long as power is on [i.e. g
static] L2
— Larger (6 transistors)

This Photo by Unknown Author
is licensed under CC BY-NC

— Larger circuitry can access bit FASTER

http://kellblog.com/2013/12/01/the-customer-acquisition-cost-cac-ratio-another-subtle-saas-metric/
https://creativecommons.org/licenses/by-nc/4.0/

- USCViterbi
Memory Controller

DRAMSs require non-trivial hardware
controller (aka memory controller)

— To split up the address and send the
row and column address as the right
time

— To periodically refresh the DRAM cells

— Plus more...

Used to require a separate chip from
the processor

But due to scaling (i.e. Moore's Law)
most processors integrate the
controller on-chip

— Helps reduce access time since fewer
hops

School of Engineering

Prev. Gen.
Processor

Graphics/Memory
Controller Hub

Video —— GMCH _ rAM

110 Controller Hub / 1/0 Bus
Hard Disk, \ PCl

CD-ROM oy ICH e Expansion
Drives Bus

e

USB ports

Legacy architectures used separate
chipsets for the memory and I/O controller

4th Generation Intel® Core™ Processor Die Map
22nm Tri-Gate 3-D Transistors

- 1 ——
System
Agent,
Display

Engine &
Memory
Controller

including
Display, PCle
and DMI I0s

(TES ST EE EE STy E R
Shared L3 Cache**

Quad core die shown above | Transistor count: 1.4 Billion Die size: 177mm?

Current general-purpose processors usually
integrate the memory controller on chip.

Implications of Memory Technology

* Memory latency of a single access using
current DRAM technology will be slow

 We must improve bandwidth

— Idea 1: Access more than just a single word at a
time (to exploit spatial locality)
— Technology: Fast Page Mode, DDR SDRAM, etc.

— Ildea 2: Increase number of accesses serviced in
parallel (in-flight accesses)

— Technology: Banking

— USC Viterbi
Legacy DRAM Timing

* (Can have only a single access “in-flight” at once

* Memory controller must send row and column address
portions for each access

/|CAS —— | Generator

Memory Array
trc= Cycle Time (110ns) = Time before next access
can start /
trac=Access Time (60ns) = Time until data is valid Row g
Address 2
= the S — A
MC Address Row Column Row Column %
Bus Address Address Address Address o
< >
Data trac / Data \ Data Cdocllumn \
Bus In / Out < In/ Out > Address
e ;\ Column Muxes /
Legacy DRAM Data in / out

(Must present new Row/Column address for each access)

i, TS(“Viterbi)

School of Engineering

Fast Page Mode DRAM Timing

e Can provide multiple column addresses with
only one row address

Column

Data Data Data
Bus In/Out Address \ Column Muxes /

Data in / out

IRAS » Timing
ICAS » Generator
Memory Array

Row <
Address | . 5
o)
—> 8:.) = N
MC Address Row Column Column %
Bus Address Address Address 4

Fast Page Mode
(Future address that fall in same row can
pull data from the latched row)

i, TS(“Viterbi

School of Engineering

Synchronous DRAM Timing

* Registers the column address and automatically increments it,
accessing n sequential data words in n successive clocks called
bursts... n=4 or 8 usually)

IRAS —* Timing | 1k
/|CAS —— | Generator

Memory Array
Row g
Address | . 5
(@) (O]
—» O QO
CLK L nd >
T
MCAddress< Row >_< Column\
Bus \ Address Address / \
Data [Data Data Data Data | _ Columh Lptch/Regiptef
o =) s =Y e
—> %—R Column Muxes
:]
SDRAM (Synchronous DRAM) Data in / out

Addition of clock signal. Will get up to ‘n’ consecutive
words in the next ‘n’ clocks after column address is sent

—— USC Viterbi
DDR SDRAM Timing

* Double data rate access data every half clock

—
IRAS —* Timing | LK
/|CAS —— | Generator
Memory Array
Row g
Address &
CLK g N 8
— x
=
(e}
MC Address Row Column \ (ad
Bus (Address H Address/
Data Data\/Data\/Data\/ Data\/ Data\/ Data\{ Data\f Data \ [K
Bus \ i Nt A2 Niss fiea \iss \ive p 17 Column Columh Lpatch/Reqgiptef
= [I T[T 1 [[1
[
Address o i~
—I S olumn Muxes
7]
- i

DDR SDRAM (Double-Data Rate SDRAM) Dataiin / out
Addition of clock signal. Will get up to ‘2n’ consecutive
words in the next ‘n’ clocks after column address is sent

* Time to access a sequential chunk of bytes in
RAM (main memory) has two components

— Time to find the start of a chunk (this is LARGE)
— Time to access each sequential byte (this is SMIALL)

* Accessing a chunk of N sequential bytes is far
faster than N random bytes

USC Viterbi @2

School of Engineering

Banking

* Divide memory into “banks” duplicating row/column decoder
and other peripheral logic to create independent memory arrays
that can access data in parallel

— uses a portion of the address to determine which bank to access

\ 4
\ 4

> Address —

Row /
Column
Address

\ 4

\ 4

= 0x004010

Row Bank Col
000000000100 00 0000010000

Data

P USCViterbi
Bank Access Timing

e Consecutive accesses to different banks can be overlapped
and hide the time to access the row and select the column

e Consecutive accesses within a bank (to different rows)
exposes the access latency

CLK ‘

MCAddress(Bank 1 X Bank 2 X Bank 2 \

Bus Access Access A Accessb [Delay due to bank conflict

A —

Data
Bus

Data 1 Data 2a Data 2b
Access 1 maps to bank 1 while access 2a maps to bank 2
allowing parallel access. However, access 2b immediately
follows and maps to bank 2 causing a delay.

i, TS(“Viterbi G2

School of Engineering

Programming Considerations

 For memory configuration given earlier, accesses to the same bank but different row
occur on an 32KB boundary

* Now consider a matrix multiply of 8K x 8K integer matrices (i.e. 32KB x 32KB)
* In code below...m2[0][0] @ 0x10010000 while m2[1][0] @ 0x10018000

| Unused | Row | Bank | Col.___| Unused

A31-A29 A28..A15 A14.A13 A12..A3 A2..A0
0x10010000 — 00 1 0000 0000 0001 0 - 0000000000 000
0x10018000 00 1 0000 0000 0001 1 - 0000000000 000

int m1[8192][8192], m2[8192][8192], result[8192][8192];
int i,73,k;

for(i=0; 1 < 8192; i++) {
for(3=0; J < 8192; j++){
result[i] []]=0;
mi m?2 for (k=0; k < 8192; k++) {
result[i] [J] += matrix1[i] [k] * matrix2[k][]j];

byl

CACHING

i, TS(“Viterbi G2

Cache Overview

* Remember what registers are used for?

— Quick access to copies of data RrocessarChip

Registers

— Only a few (32 or 64) so that they can be Srax ALUS

accessed really quickly beiip o0 e

A

— Controlled by the software/compiler

 Cache memory is a small-ish, (kilobytes to a Cache Memory
few megabytes) "fast" memory usually built
onto the processor chip

* Will hold copies of the
latest data & instructions
accessed by the processor

Bus

0x400000

* Managed by the HW 0x400040

— Transparent to the software

Memory (RAM)

i, TS(“Viterbi

Cache Blocks/Lines

e Whenever the processor

generates a read or a write,

it will first check the cache
memory to see if it
contains the desired data

— If so, it can get the data
quickly from cache

— Otherwise, it must go to
the slow main memory to
get the data (but
subsequent accesses can
be serviced by the
cache)

Proc.

o Request word @

Cache does nott
have the data and

requests whole |

0x400028

A

y

cache line 400020-

0x400000
0x400040
0x400080
0x4000c0
0x400100
0x400140

40003f

School of Engineering

@ Cache forwards desired word

Subsequent access to
any word in that block
can be serviced by the
cached copy (fast)

e Memory responds

B ()5 Viterbi
Cache Blocks/Lines

e To exploit spatial locality,
cache memory is broken

into "blocks" or "lines" Proc.
— Any time data is brought in, i
it will bring in the entire Unit of Transfer:
block of data (to exploit AWord |
spatial locality) 1288 Cache
— Blocks start on addresses [4 blocks (lines) of
multiples of their size 8-words (32-bytes)]
Unit of Transfer:
A block
0x400000 =z =
0x400040 g %.
0x400080 o
0x4000c0 <
0x400100
0x400140

Cache and Locality

* Caches take advantage of locality

e Spatial Locality

— Caches do not store individual words but blocks of words
(a.k.a. "cache line" or "cache block")

— Caches always bring in a block or line of sequential words
because if we access one, we are likely to access the next

— Bringing in blocks of sequential words takes advantage of
memory architecture (i.e. SDRAM, etc.)

 Temporal Locality

— Leave data in the cache because it will likely be accessed
again

Examples of Caching Used

* What is caching?

— Maintaining copies of information in locations that are
faster to access than their primary home

e Examples
— Data/instruction caches
— TLB
— Branch predictors
— VM
— Web browser
— File 1/O (disk cache)

— Internet name resolutions

IMPLEMENTATION ISSUES

i, TS(“Viterbi)

Cache Definitions

School of Engineering

e Cache Hit = Desired data is in current level of cache

— Can be further distinguished as read hit vs. write hit

* Cache Miss = Desired data is not present in current level

— Can be further distinguished as read miss vs. write miss

 When a cache miss occurs, the new block is brought from the
lower level into cache

— |If cache is full a block must be evicted

* When CPU writes to cache, we may use one of two policies:

— Write Through (Store Through): Every write updates both current and
next level of cache to keep them in sync. (i.e. coherent)

— Write Back: Let the CPU keep writing to cache at fast rate, not
updating the next level. Only copy the block back to the next level
when it needs to be replaced or flushed

N UsCViterbi <
School of Engineer

Primary Implementation Issues

* Write Policies

* Replacement algorithms

* Finding cached data (hit/miss)
— Mapping Algorithms

e Coherency (managing multiple versions)
— Discussed in future lectures

Write Policies

* On a write-hit how should
we handle updating the

multiple copies that exist Broc.

(in cache and main

memory)? B Write word (hit)
* Options:

— Update both NH:

— Update 1 now and 1 at the
end

1
I

0x400000
{ Analogy: A movie star who 1 0x400040
I changes their mind about what to : 0x400080
: eat for lunch, and the assistant 1 0x4000c0
l
J

I who has to communicate with the 0x400100
N e e o o o = 0x400140

- USCViterbi
Write Through Cache

* Write-through option:

________________ . 0x400000
|' Key Idea: Communicate EVERY 1 0x400040
I change to main memory as they : 0x400080
: happen (keeps both copies in I 0x4000c0
e /' 0x400100

0x400140

Update both levels of hierarchy

Depending on hardware
implementation, higher-level
may have to wait for write to
complete to lower level

Later when block is evicted, no
writeback is needed

Multiple writes require multiple
main memory updates

School of Engineering

G(Vrite word (hit)

QCache and memory

: copies are updated

On eviction, no
writeback is needed

i, TS(“Viterbi 33

Write Back Cache

* Write-back option:
— Update only cached copy

— Processor can continue
quickly Proc
— Latgr when b.|OCk.IS evicted, t Write word (hit)
entire block is written back ' %
(because bookkeeping is kept v Cache updates
on a per block basis) alue & signals
. . . o e rocessor to
— Notice that multiple writes _:!E:H:_ ontinue

on-ly -reqwre 1 writeback upon On eviction, entire
eviction block written back
0x400000 L _Ij

B ——— \
|{ Key Idea: Communicate ONLY the : 0x400040
I FINAL version of a block to main I 0x400080

1 0x4000c0
J

| memory (when the block is evicted)

e _1 0x400100

0x400140

i, TS(“Viterbi

School of Engineering

Write-through vs. Writeback

* Write-through
— Pros: Keep both versions in synch at all times

— Cons: Poor performance if next level of hierarchy is slow (see virtual memory) or if
many, repeated accesses

 Writeback

— Pros: Fast if many repeated accesses
— Cons:

e Coherency issues

Slow if few, isolated writes since entire block must be written back
* |n practice

— Writeback must be used for lower levels of hierarchy where the next level is
extremely slow

— Even at higher levels writeback is often used (Most Intel L1 caches are
writeback)

Replacement Policies

 On aread- or write-miss, a new block must be
brought in

* This requires evicting a current block residing
in the cache
* Replacement policies

— FIFO: First-in first-out (oldest block replaced)

— LRU: Least recently used (usually best but hard to
implement)

— Random: Actually performs surprisingly well

MAPPINGS

] USCViterbi
Cache Question

clC

PO Pa 56 c4 81 e® fa ee
39 bf 53 el b8 00 ff 22

Hi, I'm a block of cache
data. Can you tell me
what address | came

from?
Oxbfffeff0? Ox0080alc4?

School of Engineering

Memory / RAM

Ox000
o0x00f

0x010
Ox01f

0x020
0x02f

ox420
ox42f

Ox7a0
Ox7af

e — ()5 Viterbi
Cache Implementation

* Assume a cache of 4 blocks of 16-bytes each

* Must store more than just data!

 What other bookkeeping and identification info is needed?
— Has the block been modified

— Is the block empty or full
— Address range of the data: Where did | come from?

Cache

Addr: 0x7c0-0x7cf
Valid Modified OxZ2¢ca-7ct

Addr: 0x470-0x47f 0470-47f

Valid Unmodified

Empty

Empty

Empty

Empty

i, TS(“Viterbi

School of Engineering

Implementation Terminology

 What bookkeeping values must be stored with the
cache in addition to the block data?

* Tag — Portion of the block’s address range used to
identify the MM block residing in the cache from
other MM blocks.

* Valid bit — Indicates the block is occupied with valid
data (i.e. not empty or invalid)

* Dirty bit — Indicates the cache and MM copies are
“inconsistent” (i.e. a write has been done to the
cached copy but not the main memory copy)

— Used for write-back caches

i, TS(“Viterbi

School of Engineering

ldentifying Blocks via Address Range

e Possible methods

— Store start and end address (requires multiple comparisons)

— Ensure block ranges sit on binary boundaries (upper address bits
identify the block with a single value)

* Analogy: Hotel room layout/addressing

100 120 200 220
101 121 201 221
102 122 202 222
103 123 203 223
104 | 5 124 204 | g 224
105 | & 125 205 | [T 225
106 | 3] 126 206 | & 226
107 127 207 207
108 128 208 228
109 129 209 229

Analogy: Hotel Rooms

15t Digit = Floor

2"d Digit = Aisle
3" Digit = Room w/in
aisle

To refer to the range
of rooms on the
second floor, left aisle
we would just say
rooms 20x

4 word (16-byte) blocks:

Addr. Range
000-00f

010-01f

0000

0000

Binary

0000

0001

0000 -
1111

0000 -
1111

8 word (32-byte) blocks:

Addr. Range
000-01f

020-03f

0000

0000

Binary

000

001

00000 -
11111

00000 -
11111

Cache Implementation

 Assume 12-bit addresses and 16-byte blocks

e Block addresses will range from xx0-xxF
— Address can be broken down as follows
— A[11:4] = Tag = Identifies block range (i.e. xx0-xxF)
— A[3:0] = Byte offset within the cache block

A[11:4] A[3:0]
Tag Byte
Addr. = 0x124 Addr. = OXxACC
Byte 4 w/in block Byte 12 w/in
120-12F block ACO-ACF

0001 0010 0100 1010 1100 1100

i, TS(“Viterbi

School of Engineering

Cache Implementation

* To identify which MM block resides in each cache
block, the tags need to be stored along with the

"dirty/modified" and "valid" bits

Memory / RAM

Cache
G | et
N | earecar
6111 1160 Empty
1=6000 0000 Empty

0x000
Ox00f
0x010

ox01f
0x020

0x02f
0x470
ox47f
0x7co
Ox7cf

i, TS(“Viterbi

School of Engineering

Scenario

* You lost your keys
* You think back to where you have been lately

— You've been the library, to class, to grab food at campus center, and
the gym

— Where do you have to look to find your keys?

* If you had been home all day and discovered your keys were
missing, where would you have to look?

* Key lesson: If something can be anywhere you have to search

— By contrast, if we limit where things can be then our search need only
look in those limited places

i, TS(“Viterbi

School of Engineering

Content-Addressable Memory

 Cache memory is one form of what is known as “content-addressable”

memory
— This means data can be in any location in memory and does not have one
particular address
— Additional information is saved with the data and is used to “address”/find the
desired data (this is the “tag” in this case) via a search on each access

— This search can be very time consuming!!

Cache
Is block 0x470-

T=0111 1100 Ox47f here?
vei beo || :c:OX2€0=7CF
Processor Core 0
”?
%rip | eeee eeee eees 0olb | Read 0x47¢ T=0100 0111 9 or here”
| | Teree 0111 || 155 0 ¢
%rsp | oeee eeee 7fff fffs | >
T=0100 0111 -
Ve0 D<o Empty or here”
T=0000 0000 :
V=0 D=0 Empty or here?

Tag Comparison

* When caches have many blocks (> 16 or 32) it can be
expensive (hardware-wise) to check all tags

Processor Core

irip | 0000 0000 0004 0010 || 1 regs = A[11:0] Byte Offset A[3:0]

%rsp | 0000 0000 7fff Fffs |
Tag = A[11:4] | Cache
— T=0111 1100
@: V=1 D=0 ax7ce'7C'F

T=0100 0111
0470-47f

v @~ V=1 D=1

HIT/MISS 4—@§ /t\—é‘—l T=0100 0111 ERpEY

(&) V=0 D=0
?(:L Je— T=0000 0000 ,
8)e V=0 D=0 Empty
N2

Tag Comparison Example

* Tag portion of desired address is check against all the
tags and qualified with the valid bits to determine a
hit

Processor Core
Address = 0x47c

0100 0111 1100

%rip | eeee eeee 0004 eolb | Byte Offset A[3:0] = Oxc

%rsp | 0000 0000 7fff Fffs |
Cache 1160
o et Dea || ccOXZ2c@- 7t
roses ot [sisprp g7
HIT/MISS B
o Ve bes || o2 EMPXY
SR T-o0eo o600 | <151 ERipEY;

search everywhere.

Mapping Techniques

* Determines where blocks can be placed in the
cache

* By reducing number of possible MM blocks
that map to a cache block, hit logic (searches)
can be done faster

* 3 Primary Methods

— Direct Mapping
— Fully Associative Mapping
— K-Way Set-Associative Mapping

Fully Associative Mapping

* Any block from memory can be put in any cache

block (i.e. no restriction)

— Implies we have to search everywhere to determine hit or
miss

Cache

Memory / RAM

T=0111 1100
V=1 D=0

Cache Blk @

T=0100 0111
V=1 D=1

Cache Blk 1

T=0100 0111
V=0 D=0

Cache Blk 2

T=0000 0000
V=0 D=0

Cache Blk 3

Ox000
Ox00f
0x010

Ox01f
0x020

0x02f
0x420
ox42f
Ox7a0
Ox7af

P USCViterbi
Direct Mapping

e Each block from memory can only be put in one location

* Given n cache blocks,
MM block i maps to cache block i mod n

Memory / RAM
0x000 | _
MM Blk 0 OX00F =0mod 4
Sacall W BIK: 17| 9918 | -y 1noq 4
el 11 eiche Bk 6 ngge
V=1 D=0 MM“BYIK " 2 X — 2 mod 4
) Ox02f
e | cachE BIK'A MM BIK: 370 | 9X030 | - 5 oq 4
X
= ox040 | _
=010 2 || Eache BIK 2 _ MM°BlK 4 @§04f =0 mod 4
- MM B 0x030 | _
0000 00 || 4 e BIK'3 B30 | oxpsf | =1 Mod4
MMEBIIE: 621 | 9%9€0 | = 5 mod 4
oxoe6f

i, TS(“Viterbi Cs2)

School of Engineering

K-way Set-Associative Mapping

* Given, S sets, block i of MM maps to set i mod S
* Within the set, block can be put anywhere

* Given N=total cache blocks, let K= number of cache blocks
per set = N/S

Memory / RAM

— K comparisons required for search

0x000)
Cache MMB1K' 12| @x01e | _ ., 4o
| T-0111 11 | o520
Cache Blk'd 0x020

V=1 D=0 MM °BlK 2 =0 mod 2
Set(0 — . Ox02f
I T=\0/i20DSi Cache BIK:Y MM-°BYK 3 giggi =1 mod 2
([T-0100 01 | oxe40 | _
Set - oroe o Cache Blk 2 - MM Blk 4 Ox04F 0 mod 2
Ox050 | _
| T=3289D22 Cache Blk 3 MM Blk 5 OxO5F =1 mod 2

ox060 |
MM°Bl1Kk' 6 OxBEF =0 mod 2

i, TS(“Viterbi @3

School of Engineering

Fully Associative Implementation

e Assume 12 address bits

Offset B=16 bytes per block Determines byte/word within the block
log,B = 4 offset bits
Tag Remaining bits Identifies the MM address from where the block
came
Tag Offset Memory / RAM
Write 0x084| 0000 1000 | 0100 Ox000
0x00f
Cache 0x010
Ox01f
el 1% || Cache Bilk'o 0x020
Ox02f
T=0100 0111
ve1 oot || Gache Blk 1 e
i} ' 0x080
! 91?,299[1,2; Cache Blk 2 . Ox08f
T=0000 0000 ‘
-0 noo || GAChe Blk 3
V=0 b0 oxffo
oxfff

N (S Viterbi (7
Fully Associative Address Scheme

* Byte offset bits = log,B bits (B=Block Size)
* Tag = Remaining bits

Fully Associative Mapping

* Any block from memory can be put in any cache
block (i.e. no mapping scheme)

 Completely flexible

Cache
e s || Cache Blk' @
e s || Cache BIK'1
e oo | Cache BIK' 2
e oo | €ache BIK' 3

Access 0x004

Tag

Offset

Memory / RAM

00000000

0100

0x000
Ox00f
0x010

Ox01f
0x020

Ox02f
Ox030

Ox03f
Oxfco
Oxfcf

Oxfdo

Oxfdf
Oxfed

Oxfef
Oxffo

oxFff

II'[]S(j\ﬁterbﬁ‘IIE’
Fully Associative Mapping

Tag

Offset

Write 0x004

Cache
V=0 D=0
e s || Cache BIK'1
e oee | ©Xx000-0x00F

o os | Cache BIK'3

V=0 D=0

Block O can go in any empty cache
block, but let’s just pick cache block 2

0000 0000

0100

“““
o*
“"
“
“"
R
*
T=0000 0000 h lk o
*
Cache Blk @
*
“’
“‘ L]
*
“’
*
"‘
“
R
“
“
“

School of Engineering

Memory / RAM

0x000
Ox00f
0x010

Ox01f
0x020

Ox02f
Ox030

Ox03f
Oxfco
Oxfcf

Oxfdo

Oxfdf
Oxfed

Oxfef
Oxffo

oxFff

P USCViterbi -
Fully Associative Mapping

Tag Offset
Write ox004 0000 0000 0100
Read 0x018 0000 0001 1000
Read Oxfe@ 1111 1110 0000
Read oxffc 1111 1111 1100 Memory / RAM
0x000
ox00f
Cache J 0x010
T=1111 1110 oxo1f
Tve1 oo || OXTEQ-OXFEf M. 0x020
Ox02f
T=1111 1111 0x030
v-1 p-o || OXFEQ-OXFEL 1 ox03f
T=0000 0000 e
v-1 p-1 | 9X00Q-0X00F e Oxfco
T=0000 0001 a oxfcf
T ve1 peo || ©XO10-9X01F * oxfdo
e, oxfdf
Blocks can go anywhere so the next 3 oxfe0
accesses will prefer to fill in empty exﬁ-‘__f
blocks oxtto
oxfff

i, TS(“Viterbi

School of Engineering

Fully Associative Mapping

Tag Offset
Write 0x004 0000 0000 0100
Read 0x018 0000 0001 1000
Read 0xfe@ 1111 1110 0000
Read oxffc 1111 1111 1100 Memory / RAM
Read 9xfc4 1111 1100 0100 Ox000
""" 1 0x00f
cache 0x010
=rrRTery Eevrpmeaeeen | AN oxo1f
el o || OXFER-Oxfef || 000000 7 0x020
""" 0x02f
T=1111 111 || gl cheal Geileipi 1 7 0x030
V=1 D=0
9X000-0x0oF | oxe3f
T=1111 1100 s
Vel Do ax Ce_exfcf B IR e e nna oxfco
T=0000 0001 oxfct
~0000 %00 | ©xei1n-axe1f oxfde
oxfdf
Now cache is full so when we access a new block oxfe0
(0xfc0-Oxfcf) we have to evict a block from cache. Let exiif
us pick the Least Recently Used (LRU). Since it is gxfﬁ?
X

dirty/modified we must write 0x000-0x00f back to MM

- 01 USCViterbi
Direct Mapping

School of Engineering

e Each block from memory can only be put in one location

 Given N total cache blocks,

MM block i maps to cache block i mod N

Cache

Memory / RAM

MM

B1K

%)

T=0111 11
V=1 D=0

Cache Blk o

MM

B1K

T=0100 01
V=1 D=1

Cache Blk 1

MM

B1K

MM

B1K

T=0100 01
V=0 D=0

Cache Blk 2

MM

B1K

T=0000 00
V=0 D=0

Cache Blk 3

MM

B1K

MM

B1K

D (U | o [0UD (0N | o=

Ox000
Ox00f
Ox010

Ox01f
0x020

0x02f
Ox030
Ox03f
0x040

Ox04f
0x050

Ox05f
0x060

ox06f

=0 mod 4
=1 mod 4
=2 mod 4
=3 mod 4
=0 mod 4

=1mod4
=2 mod 4

N (S Viterbi (%
Direct Mapping Address Scheme

* Byte offset bits = log,B bits (B=Block Size)
* Block bits = log,N bits (N=# of Cache Blocks)
* Tag = Remaining bits

i, TS(“Viterbi

School of Engineering

Direct Mapping Implementation

Assume 12 address bits

Write Ox084

Offset | B=16 bytes per block Determines byte/word
log,B = 4 offset bits within the block
Block | N=4 blocks in the cache Performs hash function
log,N = 2 block bits (imod N)
Tag Remaining bits Identifies blocks that
map to the same bucket
(block 0, 4, 8, ...)

Cache

ot || €ache BIK @

Memory / RAM

o || Cache BIK 1

oo oo || Cache BIK 2

o020 | €ache BIK'3

A

MM BlK 08

MM B1K 09

MM<BlK @a

MM Blk @b

MM BlK"Oc

Tag Block Offset
0000 10 |00 | 0100
0x080
oxogf | ~ 0 mod4
0x090 | _

Ox09f | 1 mod 4
X030 | — 2 mod 4
ox0af
@).(?t.)@ =3 mod 4
Ox0bf
9x0c0 | — o mod 4

Oxocf

i, TS(“Viterbi

School of Engineering

Direct Mapping Implementation

Assume 12 address bits

Offset | B=16 bytes per block Determines byte/word Write Ox084
log,B = 4 offset bits within the block
Block | N=4 blocks in the cache Performs hash function
log,N = 2 block bits (i mod N)
Tag Remaining bits Identifies blocks that
map to the same bucket
(block 0, 4, 8, ...)
Cache Memory / RAM
T=00% 12 || ©Xx080-9X08T - MM B1K 08
o o || Cackd BIKA LB, 02
_ MM<BlKk"@a
oo 2 || Cache BIK 2
T=0000 00 MR 1K, 90
“veo oo || GaChe Blk '3
L MM B1K®'0¢

Block 0x080-0x08f hashes/maps to cache block 0 and
thus must be placed there

Tag Block Offset
0000 10 |00 | 0100
0x080
oxogf | =0 mod4
0x090 @

Ox09f | 1 mod 4
X030 | — 2 mod 4
Ox0af
@).(?t.)@ =3 mod 4
Ox0bf
9x0c0 | — o mod 4
Ox0cf

i, TS(“Viterbi

School of Engineering

Direct Mapping Implementation

e Assume 12 address bits
Tag Block Offset

Offset | B=16 bytes per block Determines byte/word Write 0x084 | 0ooo 10 |oo | olee
log,B = 4 offset bits within the block
Read 0x09c 0000 10 01 1100
Block | N=4 blocks in the cache Performs hash function Read 0x0b8 0000 10 11 1000
log,N = 2 block bits (imod N)
Tag Remaining bits Identifies blocks that

map to the same bucket
(block 0, 4, 8, ...)

Cache Memory / RAM

0x080

10000 10 || B aiRD - BYORE MM B1lk 08 oxpgs | =0 mod 4

' Ox090 |
T-0000 10 || PG BUGTF 4_/— MM°B1K® 09 o0of =1 mod 4

V=1 D=0
MM<Blk° @a 0x0a0 | _ 2 mod 4

e oos || GachE BIK:2 . oxat
—— | MBIk b gxggi =3 mod 4
ot | Bxaebe-axebf X

V=1 D=0 MM °B1K:'0¢ gigzi = 0 mod 4

Other blocks must be placed where they hash which is
computed by simply using the block bits

i, TS(“Viterbi

School of Engineering

Direct Mapping Implementation

e Assume 12 address bits
Tag Block Offset

Offset | B=16 bytes per block Determines byte/word Write 0x084 | 0ooe 10 oo | o100
log,B = 4 offset bits within the block
Read 0x09c 0000 10 01 1100
Block | N=4 blocks in the cache Performs hash function Read Ox@b8 0000 10 11 1000
log,N = 2 block bits (i mod N)
Read 0x0c8 0000 11 00 1000
Tag Remaining bits Identifies blocks that
map to the same bucket
(block 0, 4, 8, ...)

Cache c Memory / RAM
9x080-9x08

_ Ox080

T_\@/S?DE OXACP-9XOCT " MM BlK 08 @i@Sf =0 mod 4
Ox090 @ _

o0 e || BXe9e-Bxe9F MMBLK. 03, | aos | =1Mod4
= MM<BlKk"@a 0x0a0 | _
o0 ol Eache BiK: 2 oxpaf | - Mod4
T—0000 10 MM °Blk° @b gxggi = 3 mod 4
ot oo || @X0bA -0Xx0bT X

— MM SBLK 0 " | 9XO<0 | = g mod 4

Even though cache block 2 is open, accessing block 0x0c0-0x0cf

must be placed in cache block 0, replacing the previous block

i, TS(“Viterbi

School of Engineering

K-way Set-Associative Mapping

* Given, S sets, block i of MM maps to set i mod s

* Within the set, block can be put anywhere

* Given N=total cache blocks, let K= number of cache blocks

per set = N/S

Memory / RAM
— K comparisons required for search
MM°Blk ©
Cache K/////// MMEBTE. 1
ok oo || €ache Bik'e WEBTE 3
Set(0 =
T=0100 001
|| vee b1 || €AChe BlK 1 MM:°B1K 3
ot 1 T-ele0 0ol || EichE BiK2 MM B1K 4
etl —
|| Teee o8| EachiE BIKC3 T BLE, 3
MM °BlK 6

Ox000
Ox00f
Ox010

Ox01f
0x020

0x02f
Ox030
Ox03f
0x040

Ox04f
0x050

Ox05f
0x060

ox06f

=0 mod 2
=1 mod 2
=0 mod 2
=1 mod 2
=0 mod 2
=1 mod 2
=0 mod 2

R (S Viterbi (7
K-Way Set Associative Address Scheme

* Byte offset bits = log,B bits (B=Block Size)
* Set bits = log,S bits (S=# of Cache Sets)
* Tag = Remaining bits

i, TS(“Viterbi

School of Engineering

K-way Set-Associative Mapping

e Assume 12-bit addresses Tag Set Offset
Offset | B=16 bytes per block Determines byte/word Write 0x084 | 0000 100 | o | 0100
log,B = 4 offset bits within the block
Set S=N/K=2 sets Performs hash function
log,S = 1 block bits (imodS)
Tag Remaining bits Identifies blocks that map to
the same bucket (block
0x00,..., 0x08, 0x0a, 0xO0c, ...)

Cache Memory / RAM
| T1-0111 101 ‘ 0x080
— — Ch Blk 9 1 =
Set0 V=0 D=0 Ca e MM B].k 08 Ox08F 0 mod 4
T=0100 001 MM :B1K:'09 0x090 _
|| vee b1 || €AChe BlK 1 oxoof | — 1mod4
T _ Ox0a0 | _
O o | CachE BIK 2 PIRLR R, | oo | =2 Mot 4
Setl g MM-BLK: 0B | exebe | _ 5 o,
= .o =oMmo
[| "0 oo || Cache BIK'3 ox0bf
MM B1K:'@¢?! | 9X9C@ | - g mod 4
oxoct
Block 0x080-0x8f maps to set 0 but can be placed anywhere in

that set (i.e. cache block 0 or 1)

i, TS(“Viterbi

School of Engineering

K-way Set-Associative Mapping

e Assume 12-bit addresses

Offset | B=16 bytes per block
log,B = 4 offset bits

Determines byte/word
within the block

Write 0x084

Set S=N/K=2 sets
log,S = 1 block bits

Performs hash function
(imodS)

Tag Remaining bits

Identifies blocks that map to

the same bucket (block

0x00,..., 0x08, 0x0a, 0xO0c, ...)

Cache
T-0000 100 | ¥ A8D - OXOEF
Set(Q —
T=0100 001
|| vee b1 || €AChe BlK 1
T-ote0 ool | Eiiche BIK 2
Setl —
|| T2 20|l ¢ache BIK'3

Block 0x080-0x8f maps to set 0 but can be placed anywhere in
that set (i.e. cache block 0 or 1)...we'll just choose cache block 0.

Memory / RAM

Tag

Set Offset

0000 100 |0 | 0100

MM BlK 08

MM B1K 09

MM BlK" @a

MM<Bl1K @b

MM BlK"Oc

Ox080
Ox08f
Ox090

Ox09f
0x0a0

Ox0af
0x0bo
Ox0bf
Ox0co
Ox0cf

=0 mod 4
=1mod4
=2 mod 4

=3 mod 4
=0 mod 4

i, TS(“Viterbi

School of Engineering

K-way Set-Associative Mapping

e Assume 12-bit addresses

Tag

Set Offset

0000 100 |0 | 0100

Offset | B=16 bytes per block Determines byte/word Write 0x084
log,B = 4 offset bits within the block
Set S=N/K=2 sets Performs hash function Read Ox@c8
log,S = 1 block bits (imodS)
Tag Remaining bits Identifies blocks that map to
the same bucket (block
0x00,..., 0x08, 0x0a, 0xO0c, ...)
Cache Memory / RAM
17000 197 || 9X080-0X08T MM °B1K®'08
Set0 —
%1 o || X@CR-BXOCT M MM .B1K, 03
rroeos 191 | piabg-OxebE v, || MMBLK 03
L V=0 D=0 caChe Blk 3 “‘.‘
1 MMBIK"‘@c

Block 0x0b0-0x0bf maps to set 1 and can be placed in either of
the blocks of set 1. Block 0x0c0-0x0cf maps to set 0 and will be

place in the remaining free block of set 0

Read 9x0b@ 0000 101 1 0000

0000 1106 © 1000

Ox080
Ox08f
Ox090

Ox09f
0x0a0

Ox0af
0x0bo
Ox0bf
Ox0co
Ox0ct

=0 mod 4
=1mod4
=2 mod 4

=3 mod 4
=0 mod 4

i, TS(“Viterbi

School of Engineering

K-way Set-Associative Mapping

* Assume 12-bit addresses Tag Set Offset
Offset | B=16 bytes per block Determines byte/word Write 0x084 | 0000 100 | o | 0100
log,B = 4 offset bits within the block Read 0x0b® 0000 101 1 0000
Set S=N/K=2 sets Performs hash function Read Ox0c8 0000 110 © 1000
l0g,5 = 1 block bits (imod S) Read 0x@ad 0000 101 © ©100
Tag Remaining bits Identifies blocks that map to
the same bucket (block
0x00,..., 0x08, 0x0a, 0xO0c, ...)

Cache Memory / RAM
£ 9xa80-9x08f \
T=0000 101
v-1 p-o || @XQAR-BXOATE N MM B1K 987! | 9X989 | _ 5 o 4
Set0 — 0x08f
T=0000 110 _ MM B1K'99 0x090 | _
s V=1 D=0 exaca QXGC'F '0...' exeg_F 1 mOd 4
T Ox0ald | _
e % || @xabe-biebF MBI 800s | o | =2 M08 4
Setl g MM °B1K @b | ©x0b8 | _ 3 104 4
= .o = oMo
[| 0% oca || €ache B1K'3 oxdbf
MM B1K:'@¢?! | 9X9C@ | - g mod 4
Block 0x0a0-0x0af hashes to set 0 which is full. We'll pick the LRU execf
block (0x080-0x08f) which requires a writeback. Then we can

bring in 0x0a0-0x0af

i, TS(“Viterbi G

School of Engineering

Summary of Mapping Schemes

 Fully associative 31 0
y Tag Offset Xcli\ﬂlr

— Most flexible (less evictions) Fully Associative

- Longest search time O(N) e o o e’
. search N locations.
* Direct-mapped cache 31 0

MM
Tag I:m' Offset Addr

— Least flexible (more evictions)
Direct Mapped Cache
— Shortest search time O(1) h(a) = block field

Only search 1 location.

* K-way Set Associative mapping

— Compromise BN orfset] 0
Tag Offset Addr

° 1-Way set associative = Direct K-way Set Associative Mapping

* N-way set associative = Fully Assoc. h(a) = set field |
Only search k locations

— Work to search is O(k) [k is usually small
enough to be done in parallel => O(1)]

N UsCViterbi G
School of Engineer

Address Mapping Examples

ing

* 16-bit addresses, 2 KB cache,
32 bytes/block

* Find address mapping for:
— Fully Associative
— Direct Mapping
— 4-way Set Associative
— 8-way Set Associative

Address Mapping Examples

First find parameters:

— B = Block size

— N = Cache blocks

— S = Sets for 4-way and 8-way

B is given as 32 bytes/block

N depends on cache size and block size

— N = (2 KB + 32 bytes/block = (211 + 2°) = 26 = 64 blocks in
the cache

S for 4-way & 8-way

- S =N/k =64/4 = 16 sets

- S = N/k = 64/8 = 8 sets

4-way

8-way

- USCViterbi .
Fully Associative

* log,32 =5 byte/offset bits (A4-A0)

* Tag = 11 Upper bits (A15-A5) Parameters:
B =32
N = 64
S4-way = 16
S8-way = 8
15 5 4 0

Tag Offset

e —SC Viterbi
Direct Mapping

* log,32 =5 word bits (A4-A0)

* log,64 = 6 block bits (A10-A5) Parameters:
B =32

 Tag =5 Upper bits (A15-A11) N = 64
S4-way = 16
S8-way = 8

Tag Block Offset

S — S Vierbi (2>
4-Way Set Assoc. Mapping

* log,32 =5 word bits (A4-A0)

* log,16 =4 set bits (A8-A5) Parameters;
B =32

 Tag =7 Upper bits (A15-A9) N = 64
S4-way = 16
S8-way = 8

Tag Set Offset

P USCViterbi 7
3-Way Set Assoc. Mapping

* log,32 =5 word bits (A4-A0)

* log,8 = 3 set bits (A7-A5) Parameters:
B =32

* Tag = 8 Upper bits (A15-A8) N = 64
S4-way = 16
S8-way = 8

Tag Set Offset

i, TS(“Viterbi

School of Engineering

Cache Operation Example

 Address Trace
— R: 0x00a0
— W: 0x00f4
— R: 0x00bO0
— W: 0x2a2c

* Operations
— Hit
— Fetch block XX

— Evict block XX
(w/ or w/o WB)

— Final WB of block XX)

* Perform address breakdown and apply

address trace

* 2-Way Set-Assoc, N=4, B=32 bytes/block

0x00a0 0000 0000 10 00000
0x00f4 0000 0000 11 1 10100
0x00b0 0000 0000 10 1 10000
0x2a2c 0010 1010 00 1 01100

Processor Cache Operation
Access

R: Ox00a0
W: 0x00f4
R: 0x00b0

W: 0x2a2c

Done!

Fetch Block 00a0-00bf
Fetch Block 00e0-00ff
Hit

Evict 00e0-00ff w/ WB
Fetch Block 2a20-2a3f

Final WB of 2a20-2a3f

ADDING MULTIPLE LEVELS OF
CACHE

USC Viterbi

School of Engineering
* If one cache was good, more is likely better
— Add a Level 2 and even Level 3 cache
_E . .
ach is slightly larger, but slower smaller MO
Expensive
Unit of Transfer: 2 2
Word or Byte
Registers FEEE
Higher oy
Levels Ll CaChe ? i ikic i
= 1nS i Shared L3 Cache ¢ e
o N | of Transfer:
L2 Cache Cache block/line
1-8 words
Lower ~ 10ns (Take advantage of spatial
Levels : locality)
Main Memory
~ 100 ns
Unit of Transfer:
Secondary Storage Page
4KB-64KB words
~1-10 ms (Take advantage of
spatial locality)
Larger Less Slower

Expensive

http://images.google.com/imgres?imgurl=http://content.answers.com/main/content/wp/en/b/bc/DIMMs.jpg&imgrefurl=http://www.answers.com/topic/dimm&h=273&w=439&sz=36&hl=en&start=6&um=1&tbnid=5SVFjWQNFR3QuM:&tbnh=79&tbnw=127&prev=/images?q%3Ddimm%26ndsp%3D18%26um%3D1%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231%26sa%3DN
http://images.google.com/imgres?imgurl=http://www.pcguide.com/ref/hdd/z_ibm_ultrastar36zx.jpg&imgrefurl=http://www.pcguide.com/ref/hdd/index-c.html&h=437&w=398&sz=23&hl=en&start=4&tbnid=v5hBLvB3yy_E7M:&tbnh=126&tbnw=115&prev=/images?q%3Dhard%2Bdisk%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231

i, TS(“Viterbi

Principle of Inclusion

School of Engineering

* When the cache at level i misses on data that is stored in level k (i < k), the
data is brought into all levels j where i<j<k

* This implies that lower levels always contains a subset of higher levels

* Example:

— L1 contains most recently used data

— L2 contains that data + data used earlier
— MM contains all data

* This make coherence far easier to maintain between levels

Processor

A

v

L1 Cache
Memory

A

v

L2 Cache
Memory

A

v

Main
Memory

Average Access Time

* Define parameters

— H, = Hit Rate of Cache Level L,
(Note that 1-H, = Miss rate)

— T, = Access time of level i

— R; = Burst rate per word of level i (after startup access time)
— B = Block Size

* Letusfind T, = average access time

T, Without L2 cache

e 2 possible cases:
— Either we have a hit and pay only the L1 cache hit time

— Or we have a miss and read in the whole block to L1 and then
read from L1 to the processor

* Tye=Ti+ (1-Hy)e [Ty + BeRyl
NG %

N
(Miss Rate)*(Miss Penalty)

* ForT,=10ns, H, =0.9, B=8, T,,,=100ns, R,,,,=25ns
— T,.=10+[(0.1) » (100+8¢25)] =40 ns

T... with L2 cache

* 3 possible cases:
— Either we have a hit and pay the L1 cache hit time
— Or we miss L1 but hit L2 and read in the block from L2
— Or we miss L1 and L2 and read in the block from MM
g NG g /
L1 miss / L2 Hit L1 miss / L2 Miss

* ForT,=10ns,H;=0.9, T, =20ns, R, = 10ns, H, = 0.98, B=38,
Tyunv=100ns, Ry,=25 ns

* T,=10+(0.1)¢(.98)¢(20+810) + (0.1)*(.02)*(20+100+8¢25)
=10+9.8ns +0.64 = 20.44 ns

USCViterbi
Intel Nehalem Quad Core

1 Shafed|L3|catRel T 1|

UNDERSTANDING MISSES

Miss Rate

* Reducing Miss Rate means lower T,

* To analyze miss rate categorize them based on
why they occur
— Compulsory Misses
* First access to a block will always result in a miss
— Capacity Misses
* Misses because the cache is too small

— Conflict Misses

* Misses due to mapping scheme (replacement of direct
or set associative)

i (5 Vierbi
Miss Rate & Block Size

* Block size too small: Not getting enough data per access to next higher level

* Block size too large: Time is spent getting data you won't use and that data
occupies space in the cache that prevents other useful data from being
present

7
m 1k m 4k ® 16k

20% [EEEE

Miss
rate
10?’5 _""""'"'""""'"""""""'“""""""'"""'""'""“"'""""“""""""""""""":_';'_i

0% —* —&
16 32 64 128 256
Block size
Graph used courtesy “Computer Architecture: AQA, 3 ed.”, Hennessey and Patterson

* Capacity is important up to a point
— Only the data the program is currently working
with (aka its "working set") need fit in the cache

100%

75% | A
4

Hit Rate

50%

T

25%

0% e ' f !
1 2 4 8 16

Cache Size (KB)

OS:PP 2" Ed.: Fig. 9.4

i, TS(“Viterbi

School of Engineering

Miss Rate & Associativity

* At reasonable cache sizes,
associativity above 2- or 4-way
does not yield much improvement

0.14 1-way —
Conflict
0.12
0.1
o) 4-way
w 0.08 Based on SPEC92
= 8-way
» 0.06
R Capacity
= 0.04
0.02
0
oo
o
. Cache sizes (I‘(B), Compulsory

Graph used courtesy “Computer Architecture: AQA, 3 ed.”, Hennessey and Patterson

Prefetching

 Hardware Prefetching
— On miss of block i, fetch block i and i+1

e Software Prefetching
— Special “Prefetch” Instructions

— Compiler inserts these instructions to give hints ahead of
time as to the upcoming access pattern

CACHE CONSCIOUS
PROGRAMMING

* What are the necessary conditions

— Locations used to store cached data must be
faster to access than original locations

— Some reasonable amount of reuse
— Access patterns must be somewhat predictable

i, TS(“Viterbi

Working Sets

School of Engineering

* Generally a program works with different sets of data at
different times

— Consider an image processing algorithm akin to JPEG encoding

* Perform data transformation on image pixels using several weighting
tables/arrays

e Create a table of frequencies

* Perform compression coding using that table of frequencies
* Replace pixels with compressed codes

* The data that the program is accessing in a small time window
is referred to as its working set

 We want that working set to fit in cache and make as much
reuse of that working set as possible while it is in cache
— Example of performing JPG compression:

* Keep weight tables in cache when performing data transformation
* Keep frequency table in cache when compressing

i, TS(“Viterbi

‘Engineering

himi
b0
@ Instructions
-
m Modify
w Load
o Store
saimEmse wm - e A R ol R
- - - - me-
. H
¥ H - . . -
s
£ ! &
g E——
m ——
Tl
—
"
Sdd& ——
E—1 H
SIT
; -
H
! -
1
deec
§
J.o [L N) - H ﬂooon - wer % .
- EEEsss—— e i 1 fom e R o' e aeiit et 8! B mm
- L -_ Eeeen M SEmE——
4000

a 7341312 150662624 226023936 301365249

INSTRUCTIONS (376706 per pixel)

Pane size: 4096: 0 to 2% memony

https://cartesianproduct.wordpress.com/tag/working-set/

i, TS(“Viterbi

School of Engineering

Cache-Conscious Programming

Row Major Col. Major
. . for (i=0; i<SIZE; i++) {
* Order of array indexing For (3=0; J<SIZE; j++) |
. . // Row-major
— Row major vs. column major ALi]09] = A[L][3]%2;
ordering // Column-major

. . A[31[i] = A[F][i1%2;

e Blocking (keeps working set small) | 1 !

. . Example of row vs. column Memory Layout of

* Pomter-chasmg major ordering matrix A

— Linked lists, graphs, tree data
structures that use pointers do not

exhibit good spatial locality

* General Principles -

. ; Original Blocked
Keep working S.E‘t reasonably small Matrix Matrix
(temporal locality)

— Use small strides (spatial locality)
— Static structures usually better

than dynamic ones +—

Linked Lists

Memory Layout of
Linked List

i, TS(“Viterbi

School of Engineering

Blocked Matrix Multiply

* Traditional working set

— 1 row of C, 1 row of A, NxXN matrix B

o RERRRREE E

* Break NxN matrix into smaller BxB Traditional Multiply
matrices

— Perform matrix multiply on blocks

— Sum results of block multiplies to
produce overall multiply result C B

* Blocked multiply working set

— Three BxB matrices E += ﬂ * E

for(i = 0; i1 < N; i+=B) {
for(j = 0; j < N; j+=B) { +
for(k = 0; k < N; k+=B) {
for(ii = i; ii < i+B; 1ii++) {
for(Jj = J; JJ < J+B; Jj++) | = *
for(kk = k; kk < k+B; kk++) {

Cb[i1i][JJ] += Ab[ii][kk] * Bblkk][Jjl;

|

Blocked Multiply

Blocked Multiply Results

* Intel Nehalem processor
— L1D =32 KB, L2 = 256KB, L3 =8 MB

(se

Time

120

100

80

60

40

20

Blocked Matrix Multiply (N=2048)

