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CS 356 Unit 3

IEEE 754 Floating Point 

Representation

3.2

Floating Point

• Used to represent ____________ numbers 
(fractions) and __________ numbers

– Avogadro’s Number: +6.0247 * 1023

– Planck’s Constant: +6.6254 * 10-27

– Note: 32 or 64-bit integers can’t represent this 
range

• Floating Point representation is used in HLL’s 
like C by declaring variables as float or 
double

3.3

Fixed Point

• Unsigned and 2’s complement fall under a category of 

representations called “_______________”

• The radix point is ___________ to be in a fixed location for all 

numbers [Note: we could represent fractions by implicitly assuming 

the binary point is at the left…A variable just stores bits…you can 

assume the binary point is anywhere you like]

– Integers: 10011101. (binary point to right of LSB)

• For 32-bits, unsigned range is 0 to ~4 billion

– Fractions: .10011101 (binary point to left of MSB)

• Range [0 to 1)

• Main point: By fixing the radix point, we _________ the range of 

numbers that can be represented

– Floating point allows the radix point to be in a different location for each 

value

Bit storage

Fixed point Rep.

3.4

Floating Point Representation

• Similar to _____________used with decimal 

numbers

– ±D.DDD * 10 ±exp

• Floating Point representation uses the 

following form

– ±b.bbbb * 2±exp

– 3 Fields: _______, __________, __________ (also 

called ___________ or significand)

Overall Sign of #

CS:APP 2.4.2



3.5

Normalized FP Numbers

• Decimal Example

– +0.754*1015 is _____ correct scientific notation

– Must have exactly one _______________ before decimal 
point:  ___________________

• In binary the only significant digit is ________

• Thus normalized FP format is:

• FP numbers will always be _____________ before 
being stored in memory or a reg.
– The ______ is actually not stored but assumed since we always will store 

normalized numbers

– If HW calculates a result of 0.001101*25 it must normalize to 
1.101000*22 before storing

3.6

IEEE Floating Point Formats

• Single Precision 

(32-bit format)

– ___ Sign bit (0=pos/1=neg)

– ___ Exponent bits 

• __________ representation

• More on next slides

– ___ fraction (significand or 

mantissa) bits

– Equiv. Decimal Range: 

• 7 digits x 10±38

• Double Precision 

(64-bit format)

– ___ Sign bit (0=pos/1=neg)

– ___ Exponent bits 

• __________ representation

• More on next slides

– ___ fraction (significand or 

mantissa) bits

– Equiv. Decimal Range: 

• 16 digits x 10±308

S FractionExp. S FractionExp.

3.7

Exponent Representation

• Exponent needs its own sign (+/-)

• Rather than using 2’s comp. system we use 
Excess-N representation

– Single-Precision uses Excess-127

– Double-Precision uses Excess-1023

– w-bit exponent => Excess-__________

– This representation allows FP numbers to be 
easily compared

• Let E’ = stored exponent code and 
E = true exponent value

• For single-precision: E’ = E + 127

– 21 => E = 1, E’ = 12810 = 100000002

• For double-precision: E’ = E + 1023

– 2-2 => E = -2, E’ = 102110 = 011111111012

2’s 

comp.

E'

(stored Exp.)

Excess-

127

-1 1111 1111

-2 1111 1110

-128 1000 0000

+127 0111 1111

+126 0111 1110

+1 0000 0001

0 0000 0000

Comparison of 
2’s comp. &  Excess-N

Q:  Why don’t we use Excess-N 
more to represent negative #’s

3.8

Comparison & The Format

• Why put the exponent field before the fraction?

– Q: Which FP number is bigger:  

0.9999*22 or 1.0000*21

– A: We should look at the __________ first to compare FP 

values and only look at the _________ if the exponents are 

__________

• By placing the exponent field first we can compare 

entire FP values as single bit strings (i.e. as if they 

were ___________________)

0 000000100010000010

0 111000000010000001

< > = ???

0100000100000001000

0100000011110000000



3.9

Exponent Representation

• FP formats reserve 

the exponent values 

of all 1’s and all 0’s for 

special purposes

• Thus, for single-

precision the range of 

exponents is 

-126 to + 127

E’ 
(range of 8-bits shown)

E  (=E’-127)

and special values

255 = 11111111

254 = 11111110 E’-127=+127

…

128 = 10000000 E’-127=+1

127 = 01111111 E’-127=0

126 = 01111110 E’-127=-1

…

1 = 00000001 E’-127=-126

0 = 00000000

3.10

IEEE Exponent Special Values

Exp. Field Fraction Field Meaning

3.11

Single-Precision Examples

1 1000 0010 110 0110 0000 0000 0000 0000

+0.6875 = +0.1011

1

2

27=128 21=2
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3.12

Floating Point vs. Fixed Point

• Single Precision (32-bits) Equivalent Decimal Range:

– 7 significant decimal digits * 10±38

– Compare that to 32-bit signed integer where we can 

represent ±2 billion.  How does a 32-bit float allow us to 

represent such a greater range?

– FP allows for ________ but sacrifices ___________ (can’t 

represent _______________ in its range)

• Double Precision (64-bits) Equivalent Decimal Range:

• 16 significant decimal digits * 10±308

0 +∞-∞



3.13

12-bit "IEEE Short" Format

• 12-bit format defined just for this class 

(doesn’t really exist)

– 1 Sign Bit

– 5 Exponent bits (using Excess-____)

• Same reserved codes

– 6 Fraction (significand) bits

S E’ F

Sign Bit

0=pos.
1=neg.

Exponent

Excess-__

1 5-bits 6-bits

Fraction

1.bbbbbb 

3.14

Examples

1 10100 101101 +21.75 = +10101.11

1 01101 100000 +3.625 = +11.101

1 2

43

3.15

ROUNDING

3.16

The Need To Round

• Integer to FP

– +725 = 1011010101 = 1.011010101*29

• If we only have 6 fraction bits, we ________ all fraction bits

• FP ADD / SUB

• FP MUL / DIV

5.9375 x 101

+ 2.3256 x 105
__________ x 105

+ 2.3256     x 105

1.010110 

*      1.110101

10.011101001110

1010110 

1010110--

1010110----

1010110-----

10.011101001110 

+ 1010110------

Make sure to move 

the binary point

1.010110 

* 1.110101
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3.17

Rounding Methods

• 4 Methods of Rounding (you are only responsible for the first 2)

Round to _______
(Round to _____)

Normal rounding you learned in grade school.  
Round to the nearest representable number.  If 
exactly halfway between, round to representable 
value w/ 0 in LSB (i.e. nearest even fraction). 

Round towards __ 
(_________)

Round the representable value closest to but not 
greater in magnitude than the precise value.  
Equivalent to just dropping the extra bits. 

Round toward ___
(Round Up)

Round to the closest representable value greater 

than the number

Round toward ___
(Round Down)

Round to the closest representable value less 

than the number

3.18

Number Line View Of Rounding Methods

0 +∞-∞

0 +∞-∞

0 +∞-∞

0 +∞-∞

Round to 
Nearest

Round to Zero

Round to 
+Infinity

Round to -
Infinity

Green lines are FP results that fall between two 
representable values (dots) and thus need to be rounded

-3.75 +5.8

3.19

Rounding to Nearest Method

• Same idea as rounding in decimal 

• Examples:  Round 1.23xx to the nearest 1/100th

– 1.2351 to 1.2399 => round ____________

– 1.2301 to 1.2349 => round ____________

– 1.2350 => Rounding options 1.23 or 1.24

• Choose the option with an ______ digit in the LS place (i.e. _____)

– 1.2450 => Rounding options 1.24 or 1.25

• Choose the option with an ______ digit in the LS place (i.e. _____)

• Which option has the even digit is essentially a ______ 

probability of leading to rounding up vs. rounding down

– Attempt to reduce ________ in a sequence of operations

3.20

Rounding in Binary

• What does "exactly" half way correspond 

to in binary 

(i.e. 0.5 dec. = ??)

• Hardware will keep some __________ bits 

beyond what can be stored to help with 

rounding

– Referred to as the _______ bit(s), _______ bit, 

and __________ bit (GRS)

• Thus, if the additional bits are:

– 10…0 = _____________

– 0x…x = ________ half way (round ______)

– Anything else = _________ half way (round __)

1.010010101 x 24

Additional bits: 101

0.5 = 

Bits that fit in FRAC field



3.21

Round to Nearest

1.001100110 x 24 1.111111101 x 24 1.001101001 x 24

Additional bits: 110 Additional bits: 001Additional bits: 101

3.22

Round to Nearest

• In all these cases, the numbers are halfway between the 2 possible round 
values

• Thus, we round to the value w/ 0 in the LSB

1.001100100 x 24 1.111111100 x 24

0

1.001101100 x 24

Additional bits: 100 Additional bits: 100 Additional bits: 100

3.23

Round to 0 (Chopping)

• Simply drop the G,R,S bits and take fraction as 

is

1.001100001 x 24

0 10011

1.001101101 x 24

0 10011

1.001100111 x 24

0 10011

GRS GRS GRS

3.24

MAJOR IMPLICATIONS FOR 

PROGRAMMERS



3.25

FP Addition/Subtraction

• FP addition/subtraction is NOT ______________

– Because of ______________ and use of ______________

(a+b)+c ≠ a+(b+c)

– Add similar, small magnitude numbers before larger 

magnitude numbers

• Example of rounding
(0.0001 + 98475) – 98474 ≠ 0.0001 + (98475-98474)

____________________________

____________________________

• Example of infinity
1     +    1.11…1*2127 – 1.11…1*2127
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3.26

Floating point MUL/DIV

• Also not __________________

• Doesn’t _______________ over addition

– a*(b+c) ≠ a*b + a*c

– Example†:  

• (big1 * big2) / (big3 * big4) => ________________________

• 1/big3 * 1/big4 * big1 * big2 => _________________________

• (big1 / big3) * (big2 / big4) => _______________________

• Note: Take care even with integer mul/div

– F = (9/5)*C + 32 

– Should be F = ___________________

†https://www.soa.org/News-and-Publications/Newsletters/Compact/2014/may/Losing-My-Precision--Tips-For-Handling-Tricky-Floating-Point-Arithmetic.aspx

3.27

FP Comparison

• Beware of equality (==) check or 

even less- or greater-than

• Generally don't use FP as 

_________ counters

• Common approach to replace 

equality check

– Check if ____________ of two 

values is within some __________

– Many questions are raised by 

this…(what epsilon, what about 

sign, transitive equality)?

float x = 0.2 + 0.3; // 0.5?

float y = 0.15 + 0.35; // 0.5?

if(x == y) printf("Equal\n");

double t;

int cnt=0;

for(t=0.0; t < 1.0; t += 0.1)

{

printf("%d\n", cnt++);

}

Will "Equal" be printed?

What values of 'cnt' will 
be printed?

bool simple_within(

float a, float b, float eps)

{

return fabs(a-b) < eps;

}

3.28

FP & Compiler Optimizations

● Suppose we want to compute:

x = a + b + c;

y = b + c + d;

● Can the compiler optimize this as:

temp = b + c;

x = a + temp;

y = temp + d;



3.29

Floating point values in C

• Two types:  float and double

– IEEE floating point when supported

– Rounds to even

• No standard way to __________ rounding

• No standard way to get __________ values
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3.30

Casting and C

• d Cast Overflow 

Possible?

Rounding 

Possible?

Notes

int to float

int to double

float to double

double to float

float/double to int Round to 0 is used to truncate 

fractional values (i.e. 1.9 => 1)

If overflow, use __________ int.

3.31

FURTHER INQUIRY

3.32

Rounding Implementation

• There may be a large number of bits after the fraction

• To implement any of the methods we can keep only a 
subset of the extra bits after the fraction [hardware is 
finite]
– Guard bits: bits immediately after LSB of fraction (many HW 

implementations keep up to 16 additional guard bits)
• **Lookup online the usage & importance of these guard bits**

– Round bit: bit to the right of the guard bits

– Sticky bit: Logical OR of all other bits after Guard & R bits
1.01001010010 x 24

1.010010101 x 24

GRS

Logical OR (output is ‘1’ if any input is ‘1’, 
‘0’ otherwise

We can perform rounding to a 6-bit 
fraction using just these 3 bits.



3.33

More

• Some links

– https://docs.oracle.com/cd/E19957-01/806-

3568/ncg_goldberg.html

– http://floating-point-gui.de/


