CS 356 Unit 3

IEEE 754 Floating Point

Representation

- Used to represent \qquad numbers (fractions) and \qquad numbers
- Avogadro's Number: +6.0247 * 10^{23}
- Planck's Constant: +6.6254 * 10^{-27}
- Note: 32 or 64-bit integers can't represent this range
- Floating Point representation is used in HLL's like C by declaring variables as float or double

Fixed Point

- Unsigned and 2's complement fall under a category of representations called " \qquad "
- The radix point is \qquad to be in a fixed location for all numbers [Note: we could represent fractions by implicitly assuming the binary point is at the left...A variable just stores bits...you can assume the binary point is anywhere you like]
- Integers: 10011101. (binary point to right of LSB)
- Fractions: . 10011101 (binary point to left of MSB)
- Range [0 to 1)
- Main point: By fixing the radix point, we \qquad the range of numbers that can be represented
- Floating point allows the radix point to be in a different location for each value

USCViterb
 School fe Enginerexing
 Floating Point Representation
 CS:APP 2.4.2

- Similar to \qquad used with decimal numbers
$- \pm$ D.DDD * $10{ }^{ \pm \text {exp }}$
- Floating Point representation uses the following form
$- \pm b . b b b b * 2^{ \pm e x p}$
-3 Fields: \qquad
\qquad , \qquad (also called \qquad or significand)

Normalized FP Numbers

- Decimal Example
- +0.754* 10^{15} is \qquad correct scientific notation
- Must have exactly one \qquad before decimal point: \qquad
- In binary the only significant digit is \qquad
- Thus normalized FP format is:
- FP numbers will always be \qquad before
being stored in memory or a reg.
- The \qquad is actually not stored but assumed since we always will store normalized numbers
- If HW calculates a result of $0.001101^{*} 2^{5}$ it must normalize to $1.101000 * 2^{2}$ before storing

IEEE Floating Point Formats

- Single Precision
(32-bit format)
- __ Sign bit (0=pos/1=neg)
_ __ Exponent bits
- \qquad representation
- More on next slides
- \qquad fraction (significand or mantissa) bits
- Equiv. Decimal Range:
- 7 digits $\times 10^{ \pm 38}$
- Double Precision (64-bit format)
- \qquad Sign bit ($0=$ pos/1=neg)
_ Exponent bits
\qquad representation
- More on next slides
- __ fraction (significand or mantissa) bits
- Equiv. Decimal Range:
- 16 digits $\times 10^{ \pm 308}$

$$
\mathrm{USC}_{\substack{\text { Shitaoferfinjerexing }}}
$$

Exponent Representation

- Exponent needs its own sign (+/-)
- Rather than using 2's comp. system we use Excess-N representation
- Single-Precision uses Excess-127
- Double-Precision uses Excess-1023
- w-bit exponent => Excess- \qquad
- This representation allows FP numbers to be easily compared
- Let $E^{\prime}=$ stored exponent code and
$E=$ true exponent value
- For single-precision: $\mathrm{E}^{\prime}=\mathrm{E}+127$
$-2^{1}=>E=1, E^{\prime}=128_{10}=10000000_{2}$
- For double-precision: $E^{\prime}=E+1023$
$-2^{-2}=>E=-2, E^{\prime}=1021_{10}=01111111101_{2}$

2's comp.	E' (stored Exp.)	Excess- 127
-1	11111111	
-2	11111110	
-128	10000000	
+127	01111111	
+126	01111110	
+1	00000001	
0	00000000	
Comparison of		
2's comp. \& Excess-N		

Q: Why don't we use Excess-N more to represent negative \#'s

Comparison \& The Format

- Why put the exponent field before the fraction?
- Q: Which FP number is bigger: $0.9999 * 2^{2}$ or $1.0000 * 2^{1}$
- A: We should look at the \qquad first to compare FP values and only look at the \qquad if the exponents are
- By placing the exponent field first we can compare entire FP values as single bit strings (i.e. as if they were \qquad

0	10000010	0000001000		
0	10000001	1110000000	\quad	0100000100000001000
:---				

Sithorbof Engingerexing
_)

0100000011110000000

-

USCViterbi

Exponent Representation

IEEE Exponent Special Values

Exp. Field	Fraction Field	Meaning

FP formats reserve the exponent values of all 1's and all 0's for special purposes

- Thus, for singleprecision the range of exponents is
-126 to +127

E' (range of 8-bits shown)	$E\left(=E^{\prime}-127\right)$ and special values
$255=11111111$	
254 = 11111110	$E^{\prime}-127=+127$
\ldots	
$128=10000000$	$E^{\prime}-127=+1$
127 = 01111111	E'-127=0
$126=01111110$	$E^{\prime}-127=-1$
\ldots	
$1=00000001$	$E^{\prime}-127=-126$
$0=00000000$	

Single-Precision Examples
CS:APP 2.4.3
(1)
$2^{7}=128 \quad 2^{1}=2$

- Single Precision (32-bits) Equivalent Decimal Range:
-7 significant decimal digits * $10^{ \pm 38}$
- Compare that to 32-bit signed integer where we can represent ± 2 billion. How does a 32-bit float allow us to represent such a greater range?
- FP allows for \qquad but sacrifices \qquad (can't represent \qquad in its range)
- Double Precision (64-bits) Equivalent Decimal Range:
- 16 significant decimal digits * 10 ± 308

12-bit "IEEE Short" Format

- 12-bit format defined just for this class (doesn't really exist)
- 1 Sign Bit
- 5 Exponent bits (using Excess- \qquad)
- Same reserved codes
- 6 Fraction (significand) bits

Examples

(1) | 1 | 10100 | 101101 |
| :--- | :--- | :--- |

(2) $+21.75=+10101.11$

(3) | 1 | 01101 | 100000 |
| :--- | :--- | :--- |

(4) $+3.625=+11.101$

ROUNDING

The Need To Round

- Integer to FP
$-+725=1011010101=1.011010101 * 2^{9}$
- If we only have 6 fraction bits, we \qquad all fraction bits
- FP ADD / SUB
5.9375×10^{1}
$+2.3256 \times 10^{5}$

$+2.3256$
$\times 10^{5}$
$+2.3256 \times 10^{5}$ $\times 10^{5}$

$$
\begin{array}{r}
1.010110 \\
* \quad 1.110101 \\
\hline 10.011101001110
\end{array}
$$

Rounding Methods

- 4 Methods of Rounding (you are only responsible for the first 2)

Round to (Round to ___	Normal rounding you learned in grade school. Round to the nearest representable number. If exactly halfway between, round to representable value w/ 0 in LSB (i.e. nearest even fraction).
Round towards vale	Round the representable value closest to but not greater in magnitude than the precise value. Equivalent to just dropping the extra bits.
Round toward (Round Up)	Round to the closest representable value greater than the number
Round toward (Round Down)	Round to the closest representable value less than the number

Number Line View Of Rounding Methods

 (3.19

Rounding to Nearest Method

- Same idea as rounding in decimal
- Examples: Round $1.23 x x$ to the nearest $1 / 100^{\text {th }}$
- 1.2351 to 1.2399 => round \qquad
- 1.2301 to 1.2349 => round \qquad
- 1.2350 => Rounding options 1.23 or 1.24
- Choose the option with an \qquad digit in the LS place (i.e. \qquad _)
$-1.2450=>$ Rounding options 1.24 or 1.25
- Choose the option with an \qquad digit in the LS place (i.e. \qquad _)
- Which option has the even digit is essentially a \qquad probability of leading to rounding up vs. rounding down - Attempt to reduce \qquad in a sequence of operations
- What does "exactly" half way correspond
to in binary
(i.e. 0.5 dec. = ??)
- Hardware will keep some beyond what can be stored to help with rounding
- Referred to as the and \qquad
- Thus, if the additional bits are:
- $10 . . .0=$ \qquad
- $0 x . . . x=$ \qquad
- Anything else =

Rounding in Binary

\qquad bits Bits that fitit in FRAC field
\qquad bit(s), \qquad bit,
1.010010101×2^{4}
Additional bits: 101 bit (GRS) — half way (round \qquad __)
\qquad half way (round __)

USCViterbi
 School of Enginecring

- In all these cases, the numbers are halfway between the 2 possible round values
- Thus, we round to the value $w / 0$ in the LSB
1.001100100×2^{4}
1.111111100×2^{4}
1.001101100×2^{4}
Additional bits: 100
Additional bits: 100
Additional bits: 100

$$
\text { 4adittional bits: } 1
$$

\square

1.001100110×2^{4}

1.001101001×2^{4} Additional bits: 001 $\sqrt{1}$
\square

Round to 0 (Chopping)

- Simply drop the G,R,S bits and take fraction as is

GRS 1.001100001×2^{4}
\qquad

GRS
1.001101101×2^{4}
\qquad

Round to Nearest

USCViterbi stololefrysimaciar

MAJOR IMPLICATIONS FOR PROGRAMMERS

FP Addition/Subtraction

- FP addition/subtraction is NOT \qquad
- Because of \qquad and use of \qquad ($a+b)+c \neq a+(b+c)$
- Add similar, small magnitude numbers before larger magnitude numbers
- Example of rounding
$(0.0001+98475)-98474 \neq 0.0001+(98475-98474)$
\qquad
- Example of infinity

```
1 + 1.11...1*2127 - 1.11...1*2127
```


Floating point MUL/DIV

- Also not \qquad
- Doesn't \qquad over addition
$-a^{*}(b+c) \neq a^{*} b+a^{*} c$
- Examplet:
- (big1 * big2) / (big3 * big4) => \qquad
- 1/big3 * 1/big4 * big1 * big2 2 > \qquad
- (big1 / big3) * (big2 / big4) => \qquad
- Note: Take care even with integer mul/div
$-\mathrm{F}=(9 / 5) * \mathrm{C}+32$
- Should be F = \qquad
thttps://www.soa.org/News-and-Publications/Newsletters/Compact/2014/may/Losing-My-Precision--Tips-For-Handing-Tricky-Floating-Point-Arithmetic.aspx

FP Comparison

- Beware of equality (==) check or even less- or greater-than
- Generally don't use FP as
\qquad counters
- Common approach to replace equality check
- Check if \qquad of two
values is within some
- Many questions are raised by this...(what epsilon, what about sign, transitive equality)?

```
float \(x=0.2+0.3 ; / / 0.5\) ? float \(y=0.15+0.35 ; ~ / / ~ 0.5 ?\) if(x == y) printf("Equal\n");
```

Will "Equal" be printed?

```
double t;
int cnt=0;
int cnt=0;
for(t=0.0; t < 1.0; t += 0.1)
{
    printf("%d\n", cnt++);
        What values of 'cnt' will
            be printed?
bool simple_within( 
    return fabs(a-b) < eps;
```


Floating point values in C

Casting and C

- Two types: float and double
- IEEE floating point when supported
- Rounds to even
- No standard way to \qquad rounding
- No standard way to get \qquad values

Cast	Overflow Possible?	Rounding Possible?	Notes
int to float			
int to double			
float to double			
double to float			
float/double to int			Round to 0 is used to truncate fractional values (i.e. 1.9 => 1) If overflow, use \qquad int.

Rounding Implementation

- There may be a large number of bits after the fraction
- To implement any of the methods we can keep only a subset of the extra bits after the fraction [hardware is finite]
- Guard bits: bits immediately after LSB of fraction (many HW implementations keep up to 16 additional guard bits)
- **Lookup online the usage \& importance of these guard bits**
- Round bit: bit to the right of the guard bits
- Sticky bit: Logical OR of all other bits after Guard \& R bits

$$
1.01001010010 \times 2^{4}
$$

$\downarrow \downarrow$ Logical OR (output is '1' if any input is ' 1 ',
1.010010101×2^{4}
GRS
We can perform rounding to a 6 -bit
fraction using just these 3 bits.

More

- Some links
- https://docs.oracle.com/cd/E19957-01/8063568/ncg goldberg.html
- http://floating-point-gui.de/

