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CS 356 Unit 3

IEEE 754 Floating Point 
Representation
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Floating Point

• Used to represent very small numbers 
(fractions) and very large numbers
– Avogadro’s Number: +6.0247 * 1023

– Planck’s Constant: +6.6254 * 10-27

– Note: 32 or 64-bit integers can’t represent this 
range

• Floating Point representation is used in HLL’s 
like C by declaring variables as float or 
double
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Fixed Point

• Unsigned and 2’s complement fall under a category of 
representations called “Fixed Point”

• The radix point is assumed to be in a fixed location for all numbers 
[Note: we could represent fractions by implicitly assuming the 
binary point is at the left…A variable just stores bits…you can 
assume the binary point is anywhere you like]

– Integers: 10011101. (binary point to right of LSB)

• For 32-bits, unsigned range is 0 to ~4 billion

– Fractions: .10011101 (binary point to left of MSB)

• Range [0 to 1)

• Main point: By fixing the radix point, we limit the range of numbers 
that can be represented
– Floating point allows the radix point to be in a different location for each 

value

Bit storage

Fixed point Rep.
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Floating Point Representation

• Similar to scientific notation used with 
decimal numbers

– ±D.DDD * 10 ±exp

• Floating Point representation uses the 
following form

– ±b.bbbb * 2±exp

– 3 Fields: sign, exponent, fraction (also called 
mantissa or significand)

S Exp. fraction
Overall Sign of #

CS:APP 2.4.2
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Normalized FP Numbers

• Decimal Example
– +0.754*1015 is not correct scientific notation

– Must have exactly one significant digit before decimal point:  
+7.54*1014

• In binary the only significant digit is ‘1’

• Thus normalized FP format is:
±1.bbbbbb * 2±exp

• FP numbers will always be normalized before being 
stored in memory or a reg.
– The 1. is actually not stored but assumed since we always will store 

normalized numbers

– If HW calculates a result of 0.001101*25 it must normalize to 
1.101000*22 before storing
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IEEE Floating Point Formats

• Single Precision 
(32-bit format)

– 1 Sign bit (0=pos/1=neg)

– 8 Exponent bits 
• Excess-127 representation

• More on next slides

– 23 fraction (significand or 
mantissa) bits

– Equiv. Decimal Range: 
• 7 digits x 10±38

• Double Precision 
(64-bit format)

– 1 Sign bit (0=pos/1=neg)

– 11 Exponent bits 
• Excess-1023 representation

• More on next slides

– 52 fraction (significand or 
mantissa) bits

– Equiv. Decimal Range: 
• 16 digits x 10±308

S FractionExp.

1 8 23

S FractionExp.

1 11 52
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Exponent Representation

• Exponent needs its own sign (+/-)

• Rather than using 2’s comp. system we use 
Excess-N representation
– Single-Precision uses Excess-127

– Double-Precision uses Excess-1023

– w-bit exponent => Excess-2(w-1)-1

– This representation allows FP numbers to be 
easily compared

• Let E’ = stored exponent code and 
E = true exponent value

• For single-precision: E’ = E + 127
– 21 => E = 1, E’ = 12810 = 100000002

• For double-precision: E’ = E + 1023
– 2-2 => E = -2, E’ = 102110 = 011111111012

2’s 
comp.

E'
(stored Exp.)

Excess-
127

-1 1111 1111 +128

-2 1111 1110 +127

-128 1000 0000 1

+127 0111 1111 0

+126 0111 1110 -1

+1 0000 0001 -126

0 0000 0000 -127

Comparison of 

2’s comp. &  Excess-N

Q:  Why don’t we use Excess-N 

more to represent negative #’s
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Comparison & The Format
• Why put the exponent field before the fraction?

– Q: Which FP number is bigger:  
0.9999*22 or 1.0000*21

– A: We should look at the exponent first to compare FP 
values and only look at the fraction if the exponents are 
equal

• By placing the exponent field first we can compare 
entire FP values as single bit strings (i.e. as if they 
were unsigned)

0 000000100010000010

0 111000000010000001

0100000100000001000

0100000011110000000

< > = ???
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Exponent Representation

• FP formats reserved 
the exponent values 
of all 1’s and all 0’s for 
special purposes

• Thus, for single-
precision the range of 
exponents is 
-126 to + 127

E’ 
(range of 8-bits shown)

E  (=E’-127)

and special values

255 = 11111111 Reserved

254 = 11111110 E’-127=+127

…

128 = 10000000 E’-127=+1

127 = 01111111 E’-127=0

126 = 01111110 E’-127=-1

…

1 = 00000001 E’-127=-126

0 = 00000000 Reserved



3.10

IEEE Exponent Special Values

Exp. Field Fraction Field Meaning

000…00

0000...0000 ±0

Non-Zero Denormalized

(±0.bbbbbb * 2-126)

111…11

0000...0000 ± infinity

Non-Zero NaN (Not A Number)

- 0/0, 0*∞,SQRT(-x)
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Single-Precision Examples

1 1000 0010 110 0110 0000 0000 0000 0000

-1.1100110 * 23

130-127=3

-1110.011 * 20=

-14.375=

+0.6875 = +0.1011

= +1.011 * 2-1

0 0111 1110 011 0000 0000 0000 0000 0000

-1 +127 = 126

1

2

27=128 21=2

CS:APP 2.4.3
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Floating Point vs. Fixed Point

• Single Precision (32-bits) Equivalent Decimal Range:

– 7 significant decimal digits * 10±38

– Compare that to 32-bit signed integer where we can 
represent ±2 billion.  How does a 32-bit float allow us to 
represent such a greater range?

– FP allows for range but sacrifices precision (can’t represent 
all numbers in its range)

• Double Precision (64-bits) Equivalent Decimal Range:

• 16 significant decimal digits * 10±308

0 +∞-∞
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12-bit "IEEE Short" Format

• 12-bit format defined just for this class 
(doesn’t really exist)

– 1 Sign Bit

– 5 Exponent bits (using Excess-15)

• Same reserved codes

– 6 Fraction (significand) bits

S E’ F

Sign Bit

0=pos.

1=neg.

Exponent

Excess-15

E’ = E+15

E = E’ - 15 

1 5-bits 6-bits

Fraction

1.bbbbbb 
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Examples

1 10100 101101

-1.101101 * 25

20-15=5

-110110.1 * 20=

-110110.1 = -54.5=

+21.75 = +10101.11

= +1.010111 * 24

0 10011 010111

4+15=19

1 01101 100000

-1.100000 * 2-2

13-15=-2

-0.011 * 20=

-0.011 = -0.375=

+3.625 = +11.101

= +1.110100 * 21

0 10000 110100

1+15=16

1 2

43
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ROUNDING
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The Need To Round

• Integer to FP

– +725 = 1011010101 = 1.011010101*29

• If we only have 6 fraction bits, we can’t keep all fraction bits

• FP ADD / SUB

• FP MUL / DIV

5.9375 x 101

+ 2.3256 x 105
.00059375 x 105

+ 2.3256     x 105

1.010110 

*      1.110101

10.011101001110

1010110 
1010110--

1010110----
1010110-----

10.011101001110 

+ 1010110------

Make sure to move 

the binary point

1.010110 

* 1.110101

CS:APP 2.4.4
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Rounding Methods

• 4 Methods of Rounding (you are only responsible for the first 2)

Round to Nearest

(Round to Even)

Normal rounding you learned in grade school.  

Round to the nearest representable number.  If 

exactly halfway between, round to representable 

value w/ 0 in LSB (i.e. nearest even fraction). 

Round towards 0 

(Chopping)

Round the representable value closest to but not 

greater in magnitude than the precise value.  

Equivalent to just dropping the extra bits. 

Round toward +∞ 

(Round Up)

Round to the closest representable value greater 

than the number

Round toward -∞ 

(Round Down)

Round to the closest representable value less 

than the number



3.18

Number Line View Of Rounding Methods

0 +∞-∞

0 +∞-∞

0 +∞-∞

0 +∞-∞

Round to 

Nearest

Round to Zero

Round to 

+Infinity

Round to -

Infinity

Green lines are FP results that fall between two 

representable values (dots) and thus need to be rounded

-3.75 +5.8
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Rounding to Nearest Method

• Same idea as rounding in decimal 

• Examples:  Round 1.23xx to the nearest 1/100th

– 1.2351 to 1.2399 => round up to 1.24

– 1.2301 to 1.2349 => round down to 1.23 

– 1.2350 => Rounding options 1.23 or 1.24
• Choose the option with an even digit in the LS place (i.e. 1.24)

– 1.2450 => Rounding options 1.24 or 1.25
• Choose the option with an even digit in the LS place (i.e. 1.24)

• Which option has the even digit is essentially a 50-50 
probability of leading to rounding up vs. rounding down

– Attempt to reduce bias in a sequence of operations
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GRS

Rounding in Binary

• What does "exactly" half way correspond 
to in binary 
(i.e. 0.5 dec. = ??)

• Hardware will keep some additional bits 
beyond what can be stored to help with 
rounding
– Referred to as the Guard bit(s), Round bit, and 

Sticky bit (GRS)

• Thus, if the additional bits are:
– 10…0 = Exactly half way 

– 0x…x = Less than half way (round down)

– Anything else = More than half way (round up)

1.010010101 x 24

Additional bits: 101

0.5 = 0. 1  0  0 

Bits that fit in FRAC field
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Round to Nearest

1.001100110 x 24

0 10011 001101

1.111111101 x 24

0 10100 000000

1.001101001 x 24

0 10011 001101

Additional bits: 110

Round up (fraction + 1) Round up (fraction + 1)

Additional bits: 001

Leave fraction

1.111111 x 24

0.000001 x 24+

10.000000 x 24

1.000000  x 25

Requires renormalization

Additional bits: 101
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Round to Nearest

• In all these cases, the numbers are halfway between the 2 possible round 
values

• Thus, we round to the value w/ 0 in the LSB

1.001100100 x 24

0 10011 001100

1.111111100 x 24

0 10100 000000

1.001101100 x 24

0 10011 001110

Additional bits: 100

Rounding options are: 

1.001100 or 1.001101

In this case, round down

Additional bits: 100

1.111111 x 24

0.000001 x 24+

10.000000 x 24

1.000000  x 25 Requires renormalization

Rounding options are: 

1.111111 or 10.000000

In this case, round up

Additional bits: 100

Rounding options are: 

1.001101 or 1.001110

In this case, round up
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Round to 0 (Chopping)

• Simply drop the G,R,S bits and take fraction as 
is

1.001100001 x 24

0 10011 001100

1.001101101 x 24

0 10011 001101

1.001100111 x 24

0 10011 001100

drop G,R,S bits drop G,R,S bits drop G,R,S bits

GRS GRS GRS
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MAJOR IMPLICATIONS FOR 
PROGRAMMERS
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FP Addition/Subtraction

• FP addition/subtraction is NOT associative

– Because of rounding and use of infinity
(a+b)+c ≠ a+(b+c)

– Add similar, small magnitude numbers before larger 
magnitude numbers

• Example of rounding
(0.0001 + 98475) – 98474 ≠ 0.0001 + (98475-98474)

98475-98474 ≠ 0.0001 + 1

1 ≠ 1.0001

• Example of infinity
1     +    1.11…1*2127 – 1.11…1*2127

CS:APP 2.4.5
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Floating point MUL/DIV

• Also not associative

• Doesn’t distribute over addition

– a*(b+c) ≠ a*b + a*c

– Example†:  
• (big1 * big2) / (big3 * big4) => Overflow on first mul.

• 1/big3 * 1/big4 * big1 * big2 => Underflow on first mul.

• (big1 / big3) * (big2 / big4) => Better

• Note: Take care even with integer mul/div

– F = (9/5)*C + 32 

– Should be F = (9*C)/5 + 32

†https://www.soa.org/News-and-Publications/Newsletters/Compact/2014/may/Losing-My-Precision--Tips-For-Handling-Tricky-Floating-Point-Arithmetic.aspx

https://www.soa.org/News-and-Publications/Newsletters/Compact/2014/may/Losing-My-Precision--Tips-For-Handling-Tricky-Floating-Point-Arithmetic.aspx
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FP Comparison

• Beware of equality (==) check or 
even less- or greater-than

• Generally don't use FP as loop 
counters

• Common approach to replace 
equality check
– Check if difference of two values is 

within some small epsilon

– Many questions are raised by 
this…(what epsilon, what about 
sign, transitive equality)?

float x = 0.2 + 0.3; // 0.5?
float y = 0.15 + 0.35; // 0.5?
if(x == y) printf("Equal\n");

double t;
int cnt=0;
for(t=0.0; t < 1.0; t += 0.1)
{
printf("%d\n", cnt++);

}

Will "Equal" be printed?

What values of 'cnt' will 

be printed?

bool simple_within(
float a, float b, float eps)

{
return fabs(a-b) < eps;

}
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FP & Compiler Optimizations

● Suppose we want to compute:
x = a + b + c;
y = b + c + d;

● Can the compiler optimize this as:
temp = b + c;
x = a + temp;
y = temp + d;
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Floating point values in C

• Two types:  float and double

– IEEE floating point when supported

– Rounds to even

• No standard way to change rounding

• No standard way to get special values

CS:APP 2.4.6
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Casting and C

• d Cast Overflow 
Possible?

Rounding 
Possible?

Notes

int to float No Yes

int to double No No

float to double No No

double to float Yes Yes

float/double to int Yes Yes Round to 0 is used to truncate 
fractional values (i.e. 1.9 => 1)
If overflow, use MAX-NEG int.
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FURTHER INQUIRY
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Rounding Implementation

• There may be a large number of bits after the fraction
• To implement any of the methods we can keep only a 

subset of the extra bits after the fraction [hardware is 
finite]
– Guard bits: bits immediately after LSB of fraction (many HW 

implementations keep up to 16 additional guard bits)
• **Lookup online the usage & importance of these guard bits**

– Round bit: bit to the right of the guard bits
– Sticky bit: Logical OR of all other bits after Guard & R bits

1.01001010010 x 24

1.010010101 x 24

GRS

Logical OR (output is ‘1’ if any input is ‘1’, 

‘0’ otherwise

We can perform rounding to a 6-bit 

fraction using just these 3 bits.
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More

• Some links

– https://docs.oracle.com/cd/E19957-01/806-
3568/ncg_goldberg.html

– http://floating-point-gui.de/

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://floating-point-gui.de/

