
2.1

Unit 2

Integer Operations

(Arithmetic, Overflow, Bitwise Logic, Shifting)

2.2

Skills & Outcomes

• You should know and be able to apply the 

following skills with confidence

– Perform addition & subtraction in unsigned & 2's 

complement system

– Determine if overflow has occurred

– Perform bitwise operations on numbers

– Perform logic and arithmetic shifts and 

understand how they can be used for 

multiplication/division

– Understand arithmetic in binary and hex

2.3

UNSIGNED BINARY ARITHMETIC

2.4

Binary Arithmetic

• Can perform all arithmetic operations (+,-,*,÷) on binary 

numbers

• Can use same methods as in decimal

– Still use carries and borrows, etc.

– Only now we carry when sum is __ or more rather than 10 or 

more (decimal)

– We borrow ___’s not 10’s from other columns

• Easiest method is to add bits in your head in decimal 

(1+1 = 2) then convert the answer to binary (210 = 102)



2.5

Binary Addition

• In decimal addition we carry when the sum is 10 or 
more

• In binary addition we carry when the sum is 2 or more

• Add bits in binary to produce a sum bit and a carry bit

0

+ 0

00

no need 
to carry

sum bit

0

+ 1

01

no need 
to carry

sum bit

1

+ 0

01

no need 
to carry

sum bit

1

+ 1

10

carry 1 
into next 
column 
of bits

sum bit

1

2.6

Binary Addition & Subtraction

(10)

(5)

0 1 1 1

+ 0 0 1 1

(7)

(3)

1 0 1 0

- 0 1 0 1

2.7

Binary Addition

0110

+ 0111

1101

(6)

(7)

(13)

110

8 4 2 1

2.8

Binary Addition

0110

+ 0111

1101

(6)

(7)

(13)

0

+ 1

01

0

carry bit sum bit

0110

+ 0111

1101

(6)

(7)

(13)

1

+ 1

10

10 0

carry bit sum bit

0110

+ 0111

1101

(6)

(7)

(13)

1

+ 1

11

110 1

carry bit sum bit

0110

+ 0111

1101

(6)

(7)

(13)

0

+ 0

01

110 1

carry bit sum bit

1 2

43



2.9

Hexadecimal Arithmetic

• Same style of operations

– Carry when sum is 16 or more, etc.

4 D16

+ B 516

16   1

16   1

2.10

Binary Multiplication

• Like decimal multiplication, find each partial product 

and _________ them, then sum them up

• Multiplying two n-bit numbers yields at most a  

______-bit product  
0 1 1 0

*  0 1 0 1

(6)

(5)

Sum of the partial products

+

Partial Products

2.11

Binary Division

• Use the same long division techniques as in 

decimal

• Dividing two n-bit numbers may yield an 

n-bit quotient and n-bit remainder

10 1 0 1 1

0 1 0 1 r.1

-1 0

0 1

-0 0

1 1

-1 0

0 1

(2)10 (11)10

(5 r.1)10

2.12

SUBTRACTION THE EASY WAY

"Taking the 2's complement"



2.13

Modulo Arithmetic

• The primary difference between how humans 

and computers perform arithmetic is the finite 

_______________ of computers

– As humans we can use more digits (precision) as 

needed

– Computers can only used a _________ set of bits

• Much like the odometer on your car once you go too 

many miles the values will wrap from 999999 to 000000

• Essentially all computer arithmetic is ___________ 

arithmetic

• If we have a width of w bits, then all operations are 

module ______

• This leads to alternate approaches to arithmetic

– Example:  Consider how you could change the clock 

time from 5 p.m. to 3 p.m. if you can't ________ hours

2.14

Taking the Negative

• Question: Given a number in 2’s complement how 

do we find its negative (i.e.   -1 * X)

• Answer: By "__________________________"

– 0110 = +6  =>  -6 = 1010

– Operation defined as:

1. ______________________________

2. ______________________________

(i.e. finish with the same # of bits as we start with)

– See next slides for example

CS:APP 2.3.3

2.15

Taking the 2’s Complement

• Invert (flip) each bit 

(take the 1’s 

complement)

– 1’s become 0’s

– 0’s become 1’s

• Add 1 (drop final 

carry-out, if any)

010011

Bit flip is called the 1’s 
complement of a number

Original number = +19
-32  16  8   4   2   1 

Resulting number = -19

Important:  Taking the 2’s complement is equivalent to 
taking the negative (negating)

2.16

Taking the 2’s Complement

101010 Original number = -22
-32  16  8   4   2   1 

Resulting number = +22

Take the 2’s complement 
yields the negative of a 

number

Taking the 2’s complement 
again yields the original 
number (the operation is 

symmetric)

Back to original = -22

0000

1000

Original # = 0

2’s comp. of 0 is __

Original # = -8

Negative of -8 is ___

(i.e. no positive 
equivalent, but this is 
not a huge problem)

Take the 
2’s complement

Take the 
2’s complement

1 2

3



2.17

ADDITION AND SUBTRACTION

The same algorithms regardless of unsigned or signed

2.18

Radix Complement

12 1
2

39

10
11

48
7 56

12 1
2

39

10
11

48
7 56

.

00 01
02

03

98
99

04
...

.

00 01
02

03

98
99

04
...

.

0000
0001

0010

0011

1110

1111

0100

...
.

0000
0001

0010

0011

1110

1111

0100

...
.

10’s complement
04-02 = 04 + 98

2’s complement
0100 - 0010 = 0100 + 1110

Clock Analogy
4-2 = 4+10

When using modulo arithmetic, subtraction can always be converted to addition.

2.19

2’s Complement Addition/Subtraction

• Addition

– Sign of the numbers _______________

– Add column by column

– Drop any final ______________

• The secret to modulo arithmetic

• Subtraction

– Any subtraction (A-B) can be converted to addition 
(_______) by taking the ______________of B

– (A-B) becomes (A + _________ )

– Drop any carry-out 

• The secret to modulo arithmetic

CS:APP 2.3.1
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2.20

2’s Complement Addition

• No matter the sign of the operands just add as normal

• Drop any extra carry out

0011

+ 0010

(3)

(2)

1101

+ 0010

(-3)

(2)

0011

+ 1110

(3)

(-2)

1101

+ 1110

(-3)

(-2)



2.21

Unsigned and Signed Addition

• Addition process is the _________ for both 
unsigned and signed numbers

– Add columns right to left

• Examples:

1001

+ 0011

If unsigned If signed

2.22

2’s Complement Subtraction
• Take the 2’s complement of the subtrahend (bottom #) 

and add to the original minuend (top #)

• Drop any extra carry out

0011

- 0010

(+3)

(+2)

1101

- 1110

(-3)

(-2)

2.23

Unsigned and Signed Subtraction

• Subtraction process is the same for both 
unsigned and signed numbers

– Convert A – B     to    A + Comp. of B 

– Drop any final carry out

• Examples:

(12)

(2)

(-4)

(2)

If unsigned If signed

1100

- 0010

If unsigned If signed

2.24

Important Note

• Almost all computers use 2's complement 

because…

• The same addition and subtraction 

___________ can be used on unsigned and 2's 

complement (signed) numbers

• Thus we only need one set of 

_____________________________ to 

perform operations on both unsigned and 

signed numbers



2.25

OVERFLOW

2.26

Overflow

• Overflow occurs when the result of an 

arithmetic operation is _____________

________________________________

• Conditions and tests to determine 

overflow depend on the ________ being 

used 

– Different algorithms for detecting overflow 

based on _____________________

CS:APP 2.3.1
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2.27

Unsigned Overflow

0000

0001

0010

0011

0100

0101

0110

0111

1000

1111

1110

1101

1100

1011

1010

1001

0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+10

+11

+12

+13

+14

+15

Overflow occurs when you cross 

this discontinuity 

10

Plus 7

10 + 7 = 17

With 4-bit unsigned numbers we 

can only represent 0 – 15.  Thus, 

we say overflow has occurred.

2.28

2’s Complement Overflow

0000

0001

0010

0011

0100

0101

0110

0111

1000

1111

1110

1101

1100

1011

1010

1001

0

+1

+2

+3

+4

+5

+6

+7

-8

-7

-6

-5

-4

-3

-2

-1

Overflow occurs when you cross this 

discontinuity 

-6 + -4 = -10

With 4-bit 2’s complement

numbers we can only represent 

-8 to +7.  Thus, we say overflow 

has occurred.

5 + 7 = +12



2.29

Overflow in Addition

• Overflow occurs when the result of the addition 
cannot be represented with the given number 
of bits.

• Tests for overflow:

– Unsigned: if _________ [result __________ than inputs]

– Signed: if _____________ [result has inappropriate sign]

1101

+ 0100

0001

11

(13)

(4)

(17)

(-3)

(4)

(+1)

If unsigned If signed

Overflow
Cout = 1

No Overflow
n + p

0110

+ 0101

1011

10

(6)

(5)

(11)

(6)

(5)

(-5)

If unsigned If signed

No Overflow
Cout = 0

Overflow
p + p = n

2.30

Overflow in Subtraction

• Overflow occurs when the result of the subtraction 
cannot be represented with the given number of 
bits.

• Tests for overflow:

– Unsigned: if _______ [expect negative result] 

– Signed: ________________[result has inappropriate sign]

(7)

(8)

(-1)

(7)

(-8)

(15)

If unsigned If signed

0111

- 1000

0111_

0111

0111

+    1

1111 

1’s comp. of B

Add 1

A

If unsigned
Overflow
Cout = 0

If signed
Overflow
p + p = n

(15) (-1)Desired 
Results

2.31

MULTIPLICATION AND DIVISION

2.32

Binary Multiplication

• Multiplying two n-bit numbers yields at most a  

2*n-bit product  

• Multiplication operations on a modern processor can 

take ______ times longer than addition operations
0 1 1 0

*  0 1 0 1

0 1 1 0

(6)

(5)

Sum of the partial products

0 0 0 0

0 1 1 0

+ 0 0 0 0

0 0 1 1 1 1 0

Partial Products

CS:APP 2.3.4



2.33

Binary Division

• Dividing two n-bit numbers may yield an 

n-bit quotient and n-bit remainder

• Division operations on a modern processor can take 

________ times longer than addition operations

10 1 0 1 1

0 1 0 1 r.1

-1 0

0 1

-0 0

1 1

-1 0

0 1

(2)10 (11)10

(5 r.1)10

2.34

Unsigned Multiplication Review

• Same rules as decimal multiplication

• Multiply each bit of Q by M shifting as you go 

• An m-bit * n-bit mult. produces an m+n bit result

• Notice each partial product is a shifted copy of M or 

0 (zero)

1010

* 1011

1010

1010_

0000__

+  1010___

01101110

M (Multiplicand)
Q (Multiplier)

PP(Partial

Products)

P (Product)

2.35

Signed Multiplication Techniques

• When multiplying signed (2’s comp.) numbers, some 
new issues arise

• Must sign extend partial products (out to 2n bits)

1001

* 0110

0000

1001_

1001__

+ 0000___

00110110

= -7
= +6

= +54

Without Sign Extension…
Wrong Answer!

1001

* 0110

00000000

1111001_

111001__

+ 00000___

11010110

= -7
= +6

= -42

With Sign Extension…
Correct Answer!

2.36

Signed Multiplication Techniques

• Also, must worry about negative multiplier

– MSB of multiplier has negative weight

– If MSB=1, multiply by -1 (i.e. take 2’s comp. of multiplicand)

1100

* 1010

00000000

1111100_

000000__

+ 11100___

11011000

= -4
= -6

= -40

With Sign Extension but w/o 
consideration of MSB…
Wrong Answer!

With Sign Extension and w/ 
consideration of MSB…
Correct Answer!

1100

* 1010

00000000

1111100_

000000__

+ 00100___

00011000

= -4
= -6

= +24

Place Value: -8
Multiply by -1

Main Point:  Signed and Unsigned Multiplication require 
different techniques…Thus different instructions.



2.37

BITWISE & LOGIC OPERATIONS

2.38

Modifying Individual Bits

• Suppose we want to change only a single bit (or a few bits) 

in a variable [i.e. char v;] _________________ the other 

bits

– Set the LSB of v to 1 w/o affecting other bits

• Would this work?  v = 1;

– Set the upper 4 bits of v to 1111 w/o affecting other bits

• Would this work?  v = 0xf0;

– Clear the lower 2 bits of v to 00 w/o affecting other bits

• Would this work?  v = 0;

– No!!!  Assignment changes ALL bits in a variable

• Because the smallest unit of data in computers is usually a 

__________, manipulating individual bits requires us to 

use BITWISE OPERATIONS.

– AND = &

– OR = |

– XOR = ^

– NOT = ~

? ? ? ? ? ? ? ?

?

Desired v

(change LSB to 1)

? ? ? ? ? ? 1

1-byte variable

1

Desired v

(change upper 4 bits to 
1111)

1 1 1 ? ? ? ?

?

Desired v

(change lower 2 bits to 
00)

? ? ? ? ? 0 0

7    6    5    4     3    2    1    0 Bit:

CS:APP 2.1.7

2.39

Using Bitwise Ops to Change Bits

• ANDs can be used to clear a bit (make it '0') or leave it unchanged

• ORs can be used to set a bit (make it '1') or leave it unchanged

• XORs can be used to invert a bit (flip it) or leave it unchanged

X Y AND

0 0 0

0 1 0

1 0 0

1 1 1 P
a
s
s

F
o
rc

e

'0
'

X Y XOR

0 0 0

0 1 1

1 0 1

1 1 0

P
a
s
s

In
v
e
rt

X Y OR

0 0 0

0 1 1

1 0 1

1 1 1

P
a
s
s

F
o
rc

e

'1
'

0 OR y = __

1 OR y = __

y OR y = 1

0 AND y = __

1 AND y = __

y AND y = y

0 XOR y = __

1 XOR y = NOT __

y XOR y = 0

Identity 0 OR Y = __ 1 AND Y = __

Null Ops 1 OR Y = __ 0 AND Y = __

Idempotency Y OR Y = Y Y AND Y = Y

2.40

Bitwise Operations
• The C AND , OR, XOR, NOT bitwise operations perform 

the operation on each pair of bits of 2 numbers

0xa5
AND 0xf0

1010 0101
& 1111 0000

0xa5
OR 0xf0

1010 0101
| 1111 0000

0xa5
XOR 0xf0

1010 0101
^ 1111 0000

#include <stdio.h> // C-Library
// for printf()

int main()
{

char a = 0xa5;
char b = 0xf0;

printf("a & b = %x\n", a & b);
printf("a | b = %x\n", a | b);
printf("a ^ b = %x\n", a ^ b);
printf("~a = %x\n",    ~a);
return 0;

}

NOT 0xa5 ~ 1010 0101

C bitwise operators:
& = AND
| = OR
^ = XOR
~ = NOT

CS:APP 2.1.7



2.41

Logical vs. Bitwise Operations

• The C language has two types of logic operations

– Logical  and Bitwise

• Logical Operators (______________) 

– Interpret entire value as either _____ (non-zero) or _____ (zero)

• Bitwise Operators (_____________)

– Applies the logical operation on each __________ of the inputs

0000 0001=T
&& 0000 0010=T

0000 0001=T

0000 0001
& 0000 0010

F = 0000 0000

! 0000 0001=T
0000 0000=F

~ 0000 0001
T = 1111 1110

#include <stdio.h> 
int main()
{

int x = 1, y = 2;
int z1 = x && y;
int z2 = x & y;
printf("z1=%d, z2=%d\n",z1,z2);

char x = 1;
if( !x ) { printf("L1\n"); }
if( ~x ) { printf("L2\n"); }
return 0;

}

CS:APP 2.1.8

Important Note: Since !(non-zero) = 0;  and !0 = 1

So !!35=1.  And !!-109=1

!! 0101 0111=T
0000 0001=T

2.42

Application: Swapping via XORs 

• Swapping variables can be done 
with a 3rd 'temp' variable

• For bitwise swapping, XORs can 
be used

0101 1001=x#include <stdio.h> 
int main()
{

int x = 0x59, y = 0xd3;

return 0;
}

1101 0011=y

#include <stdio.h> 
int main()
{

int x = 0x59, y = 0xd3;
int temp = x;
x = y;
y = temp;

return 0;
}

Traditional swap with 'temp'

XOR swap

2.43

Exercises

• Determine if an integer is 

odd (w/o % operator).

• Determine if an integer is 

a multiple of 4 (w/o % 

operator).

bool isOdd(int x)
{

}

bool isMultOf4(int x)
{

}

2.44

SHIFT OPERATIONS

Arithmetic and Logical Shifts



2.45

Shift Operations

• Shifts data bits either left or right
– Bits shifted out and __________________ on one side

– Usually (but not always) 0’s are shifted in on the other side 

• Shifting is equivalent to multiplying or dividing by powers of __

• 2 kinds of shifts
– Logical shifts (used for ________________ numbers)

– Arithmetic shifts (used for ______________ numbers)

0 0 0 0 0 0 1 1

Right Shift by 2 bits:

Original Data

Shifted by 2 bits

0 0 0 0 1 1 0 0

0 0 0 0 1 0 1 0 0 0

Left Shift by 2 bits:

Original Data

Shifted by 2 bits

0 0 0 0 1 0 1 0

0 0
0’s shifted in… 0’s shifted in…

CS:APP 2.1.9

2.46

Logical Shift vs. Arithmetic Shift

• Logical Shift

– Use for ___________ or non-
numeric data

– Will always shift in ___’s 
whether it be a left or right 
shift

• Arithmetic Shift

– Use for ____________ data

– Left shift will shift in 0’s

– Right shift will sign extend 
(___________ the sign bit) 
rather than shift in 0’s 

• If negative number…stays 
________ by shifting in __’s

• If positive…stays _________ by 
shifting in ___’s

Right shift

Left shift

Right shift

Left shift

_

_

_

2.47

Logical Shift

• 0’s shifted in

• Only use for operations on unsigned data

– Right shift by n-bits = ____________ by 2n

– Left shift by n-bits = ____________ by 2n

0 0 

Logical Right Shift by 2 bits:

0 0 0

Logical Left Shift by 3 bits:

0’s shifted in… 0’s shifted in…

0 ... 0 1 1 0 0 = +12

= ____ = ___

0 x 0 0 0 0 0 0 0 C

2.48

Arithmetic Shift

• Use for operations on signed data

• Arithmetic Right Shift – replicate MSB
– Right shift by n-bits = Dividing by 2n

• Arithmetic Left Shift – shifts in 0’s
– Left shift by n-bits = Multiplying by 2n

1 1

Arithmetic Right Shift by 2 bits:

0 0

Arithmetic Left Shift by 2 bits:

MSB replicated and shifted in… 0’s shifted in…

1 1 ... 1 1 0 0 = -4

= ____ = -16

Notice if we shifted in 0’s (like a 
logical right shift) our result would 

be a positive number and the 
division wouldn’t work

0 x F F F F F F F C

Notice there is no difference between 
an arithmetic and logical left shift.  

We always shift in 0’s.



2.49

Multiplying by Non-Powers of 2

• Left shifting by n-bits allow us to 

multiply by 2n

• But what if I have to multiply a 

number by a non-power of 2 (i.e. 

17*x).  Can we still use shifting?

– _______. Break constant into a _____ 

using ____________ coefficients

– 17x = _________________

• Exercise: How many adds/shift 

would be needed to compute 14*x

– ____________________________ OR

– ____________________________

int mul17(int x)
{
return 17*x; 

}

17=
124816

sall $4, %edx
addl %edx, %eax

int mul17(int x)
{
int x16 = _________;
return ____________; 

}

Written Code

Optimized Assembly 

(Equivalent C)

CS:APP 2.3.6

Compiler will determine when ___________ become ________ than constant multiplication

2.50

Integer Division By Shifting

 What is 5/2?

 ______

 Is 5/2 = (5 >> 1)

 _______

5 = 0 1 0 1

124-8

5>>1 =

124-8 0.5

-5>>1 =

124-8 0.5

-5 = 

124-8

 What is -5/2?

 _____

 Is -5/2 = (-5 >> 1)

 _____ 

Main Point:  Rounding ______ when using shifting to divide a ________ number.

CS:APP 2.3.7

2.51

Dividing Negative Numbers

0

5 >> 1
0 0 1 0

124-8

1

0.5

0

-5 >> 1

-4-8 -3 -2.5

2.52

Rounding (by dropping 
fractional portion)

Rounding (by dropping 
fractional portion)

+5>>1

124-8

1

0.5

-5>>1

1 1 0 1

0 2.52-2-2.5

Traditional integer division 
______________________

(i.e. ______ fractional portion)

Traditional integer 

rounding

Main Point:  Dividing numbers in the 2's complement system causes rounding to 

the _________________________, not toward _____ as desired. 

2.52

Biasing

• Summary: Dividing x / 2k by 

performing (x >> k)…

– Works when ______ OR when 

______  & x is a multiple of __

– Doesn't work when _____and 

x is NOT a multiple of ____

• Idea to solve the problem: 

– ______ some value (aka a ___

value) to x before _______ that 

will correct for the rounding 

issue 

– Add ________ (i.e. _______)

-4>>1 = 1 1 1 0

-4 = 1 1 0 0

-5>>1 = 1 1 0 1

-5 = 1 0 1 1

-5    1 0 1 1

-4>>1 = 1 1 1 0 -2

-3

-2



2.53

More Examples

• -8 / 4 = (-8 >> 2)

– Bias by ________

– (-8 + ___) >> 2

• -7 / 4 = (-7 >> 2)

– Bias by ________

– (-7 + ___) >> 2

• -20 / 16 = (-20 >> 4)

– Bias by _______

– (-20 + ____) >> 4

-8 = 1 0 0 0
-8>>2 = 1 1 1 0

-7 = 1 0 0 1
-7>>2 = 1 1 0 0

-1

-2

-2

-2

2.54

CS:APP Practice 2.43 (tweaked)
#define M /* mystery number 1 */
#define N /* mystery number 2 */

int arith(int x, int y)
{

int result = x*M + y/N;
return result;

}

/* Translation of assembled code for
a given value of M and N */

int optarith(int x, int y)
{

int t = x;
x <<= 5;
x -= t;
if(y < 0) y += 3;
y >>= 2;
return x + y; 

}

What were M and N when the code was 

compiled?


