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Unit 2

Integer Operations
(Arithmetic, Overflow, Bitwise Logic, Shifting)
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Skills & Outcomes

e You should know and be able to apply the
following skills with confidence

— Perform addition & subtraction in unsigned & 2's
complement system

— Determine if overflow has occurred
— Perform bitwise operations on numbers

— Perform logic and arithmetic shifts and
understand how they can be used for
multiplication/division

— Understand arithmetic in binary and hex
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UNSIGNED BINARY ARITHMETIC
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Binary Arithmetic

* Can perform all arithmetic operations (+,-,*,+) on binary
numbers

* Can use same methods as in decimal
— Still use carries and borrows, etc.

— Only now we carry when sumis ___ or more rather than 10 or
more (decimal)

— We borrow ‘s not 10’s from other columns

* Easiest method is to add bits in your head in decimal
(1+1 = 2) then convert the answer to binary (2,, = 10,)
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Binary Addition

* In decimal addition we carry when the sum is 10 or
more

* In binary addition we carry when the sum is 2 or more
* Add bits in binary to produce a sum bit and a carry bit

1
0 0 1 1
+ 0 + 1 + 0 + 1
00 /0 1\ 0 1\ 10
no nZd ‘}m bit noneed sum bit no need sum bit carry1  sum bit
to carry to carry to carry into next

column
of bits
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Binary Addition & Subtraction

0111(7) 1010 (10)

+00 1 1(3) -0101 (5)
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Binary Addition

110
0110 (6)

8421

+ 0111 (7)
1101 (13)
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Binary Addition
O B

10 0
0
0 (6) 10 (6) 1
+ 1
+ 1(7) — + 11 (7) + 1
01 —_—
1(13) 01 (13) 10
carry bit sum bit / \
carry bit sum bit
110 1
@ 110 1 @
0110 (6) 0
110 (6) 1
+ 0111 (7) + 0
+ 0111 (7) + 1 —_— —
101 (13) 11 1101 (13) 01
/ \ carry bit sum bit

carry bit sum bit
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Hexadecimal Arithmetic

» Same style of operations
— Carry when sum is 16 or more, etc.

4 D, __
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Binary Multiplication

* Like decimal multiplication, find each partial product

and them, then sum them up
* Multiplying two n-bit numbers yields at most a
___ -bit product
01 1 0¢(e6)

* 010 1¢(5)

:|> Partial Products
+

<—— Sum of the partial products
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Binary Division

» Use the same long division techniques as in
decimal

* Dividing two n-bit numbers may yield an
n-bit quotient and n-bit remainder

0101r.1 (5r.1)
(2) 10 10 |1 011 (11),,
10 |
01
00
11
-10
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"Taking the 2's complement"

SUBTRACTION THE EASY WAY
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Modulo Arithmetic

* The primary difference between how humans
and computers perform arithmetic is the finite
of computers

— As humans we can use more digits (precision) as
needed
— Computers can only used a set of bits

* Much like the odometer on your car once you go too
many miles the values will wrap from 999999 to 000000

* Essentially all computer arithmetic is
arithmetic

* |If we have a width of w bits, then all operations are
module
* This leads to alternate approaches to arithmetic

— Example: Consider how you could change the clock
time from 5 p.m. to 3 p.m. if you can't hours
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Taking the Negative

* Question: Given a number in 2’s complement how
do we find its negative (i.e. -1 * X)
* Answer: By " "
— 0110=+6 => -6=1010
— Operation defined as:
1.

2.
(i.e. finish with the same # of bits as we start with)

— See next slides for example
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Taking the 2’s Complement

* Invert (flip) each bit
(take the 1’5 010011 I Original number = +19

complement) ﬂ
— 1’s become 0’s

Bit flip is called the 1’s
complement of a number

—0’s become 1’s

* Add 1 (drop final
carry-out, if any)

Resulting number = -19

Important: Taking the 2's complement is equivalent to
taking the negative (negating)
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Taking the 2’s Complement

101010 | Original number = -22 |

@ 0000 |  Original#=0

Take the

Take the 2's complement 2's complement

yields the negative of a
number

- | 2's comp.of Ois __ ‘
Resulting number = +22 |

Taking the 2's complement
again yields the original
number (the operation is

symmetric) Take the

2's complement

@ 1000 | Original # = -8 ‘

Back to original = -22

Negative of -8is ____

(i.e. no positive
equivalent, but this is
not a huge problem)
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The same algorithms regardless of unsigned or signed

ADDITION AND SUBTRACTION
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Radix Complement

Clock Analogy
4-2 =4+10

10’s complement
04-02 =04 + 98

2’s complement
0100 - 0010 = 0100 + 1110

When using modulo arithmetic, subtraction can always be converted to addition.
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2’s Complement Addition/Subtraction

e Addition

— Sign of the numbers

— Add column by column

— Drop any final

* The secret to modulo arithmetic
 Subtraction

— Any subtraction (A-B) can be converted to addition
( ) by taking the of B

— (A-B) becomes (A + )
— Drop any carry-out
* The secret to modulo arithmetic
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2’s Complement Addition

* No matter the sign of the operands just add as normal
* Drop any extra carry out

0011 (3) 1101 (-3)
+ 0010 (2) + 0010 (2)

0011 (3) 1101 (-3)
+ 1110 (-2) + 1110 (-2)
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Unsigned and Signed Addition

* Addition process is the for both
unsigned and signed numbers
— Add columns right to left

e Examples:

If unsigned If signed
1001
+ 0011
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2’s Complement Subtraction

* Take the 2’s complement of the subtrahend (bottom #)
and add to the original minuend (top #)

* Drop any extra carry out

0011 (+3)
- 0010 (+2)

1101 (-3)
- 1110 (-2)
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Unsigned and Signed Subtraction

e Subtraction process is the same for both
unsigned and signed numbers

—ConvertA—B to A+ Comp.ofB
— Drop any final carry out

e Examples:

If unsigned If signed
1100 (12) (-4)
_ o010 (2 (2 =

If unsigned If signed
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Important Note o

* Almost all computers use 2's complement
because...

* The same addition and subtraction
can be used on unsigned and 2's
complement (signed) numbers

* Thus we only need one set of
to
perform operations on both unsigned and
signed numbers
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OVERFLOW
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Overflow

CS:APP 2.3.1
CS:APP 2.3.2

* Overflow occurs when the result of an
arithmetic operation is

e Conditions and tests to determine
overflow depend on the being
used

— Different algorithms for detecting overflow
based on

S — 5 Viterh{
Unsigned Overflow

Overflow occurs when you cross
this discontinuity

0

10+7=17

With 4-bit unsigned numbers we
can only represent 0 — 15. Thus,
we say overflow has occurred.
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2’s Complement Overflow

5+7=+12
-6+-4=-10

With 4-bit 2’s complement
numbers we can only represent
-8 to +7. Thus, we say overflow

has occurred.

Overflow occurs when you cross this
discontinuity
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Overflow in Addition

e Overflow occurs when the result of the addition
cannot be represented with the given number

of bits.
* Tests for overflow:
— Unsigned: if [result than inputs]
— Signed: if [result has inappropriate sign]
11 If unsigned If signed 01 If unsigned If signed
1101 (13) (-3) 0110 (6) (6)
+ 0100  (4) (4) + 0101 (5) (5)
0001 (17) (+1) 1011 (11) (-5)

Overflow No Overflow No Overflow Overflow
Cout =1 n+p Cout=0 p+p=n
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Overflow in Subtraction

* Overflow occurs when the result of the subtraction
cannot be represented with the given number of

bits.
* Tests for overflow:
— Unsigned: if [expect negative result]
— Signed: [result has inappropriate sign]

If unsigned If signed 0111

0111 (7) (7) :l; 0111 A
- 1000 (8) (-8) 0111 ft’scomp.ofB

(-1) (15) + 1 Add1
Desired 1111 (15) (-1)
Results If unsigned If signed

Overflow Overflow
Cout=0 p+p=n
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MULTIPLICATION AND DIVISION
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Binary Multiplication
* Multiplying two n-bit numbers yields at most a

2*n-bit product
* Multiplication operations on a modern processor can

take times longer than addition operations
01 1 0¢(6)
* 010 1(5)
0110
0000 Partial Products
0110
+ 0000O0

001111 0« Sum of the partial products
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Binary Division

* Dividing two n-bit numbers may yield an
n-bit quotient and n-bit remainder

* Division operations on a modern processor can take
times longer than addition operations

0101r.1 (5r.1),
(2),, 101011 (11) 4,
-1 0 |
01
-0 0
11
-1 0
01
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Unsigned Multiplication Review

* Same rules as decimal multiplication

* Multiply each bit of Q by M shifting as you go

* An m-bit * n-bit mult. produces an m+n bit result

* Notice each partial product is a shifted copy of M or

0 (zero)
1010 M (Multiplicand)
* 1011 Q (Multiplier)
1010
1010_ PP (Partial
0000___ Products)
+ 1010_

01101110 P (Product)
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Signed Multiplication Techniques

* When multiplying signed (2’s comp.) numbers, some
new issues arise

* Must sign extend partial products (out to 2n bits)

Without Sign Extension...
Wrong Answer!

With Sign Extension...
Correct Answer!

1001 = -7 1001 = -7
* 0110 = +6 * 0110 = +6
0000 00000000
1001_ 1111001_
1001_ 111001__
+ 0000 + 00000
00110110 = +54 11010110 = -42
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Signed Multiplication Techniques

* Also, must worry about negative multiplier
— MSB of multiplier has negative weight
— If MSB=1, multiply by -1 (i.e. take 2’s comp. of multiplicand)

With Sign Extension but w/o
consideration of MSB...
Wrong Answer!

With Sign Extension and w/
consideration of MSB...
Correct Answer!

1100 = -4 Place Value: -8 1100 = -4

* 1010 = -6 Multiply by -1 *1:210 = -6
00000000 00000000
1111100_ 1111100_
000000___ 000000___
+ 11100 + 00100_

11011000 = -40 00011000 = +24

Main Point: Signed and Unsigned Multiplication require
different techniques...Thus different instructions.
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BITWISE & LOGIC OPERATIONS
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Modifying Individual Bits

Bit: 7 6 5 4 3 210

* Suppose we want to change only a single bit (or a few bits)
in a variable [i.e. char v;] the other ‘ ? ‘ ?1?|?|? ‘ 2|2 ?‘

bits 1-byte variable
— Set the LSB of v to 1 w/o affecting other bits
* Would thiswork? v = 1; ‘?‘? 2|2 ?‘? ?
— Set the upper 4 bits of v to 1111 w/o affecting other bits Desired v

¢ Would this work? v = 0x£0;

Clear the lower 2 bits of v to 00 w/o affecting other bits
¢ Would this work? v = 0;

(change LSB to 1)

?‘???‘

— No!!l Assignment changes ALL bits in a variable

) . ) Desired v
* Because the smallest unit of data in computers is usually a )
A . . . A A (change upper 4 bits to
, manipulating individual bits requires us to 1111)
use BITWISE OPERATIONS.
— AND=& ‘?‘????‘?m
— OR=| Desired v
— XOR=A (change lower 2 bits to
00)
- NOT=~
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Using Bitwise Ops to Change Bits

* ANDs can be used to clear a bit (make it '0') or leave it unchanged
* ORs can be used to set a bit (make it '1') or leave it unchanged
* XORs can be used to invert a bit (flip it) or leave it unchanged

X Y AND | X |y |or X Y XOR
0 0 0 o o |o |o @ 0 0 0 @
0 1 0 L 0 1 1 2l 0 1 1 g
1 Jo Jo g 1o |1 ]g. 1[0 BB
I E T e I E
OANDy=__ O0ORy=__ 0XORy=__
1ANDy=__ 10Ry=__ 1 XORy=NOT__
yANDy=y yORy=1 y XORy=0
Identity OORY=__ 1ANDY=__
Null Ops 10RY=__ 0ANDY=__
Idempotency | YORY =Y YANDY=Y
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Bitwise Operations

* The CAND, OR, XOR, NOT bitwise operations perform
the operation on each pair of bits of 2 numbers

#include <stdio.h> // C-Library
oxa5 — 1010 0101 // for printf()
AND_0Oxf0e & 1111 0000 . .
int main()
— {
char a = 0xa5;
char b = 0xfe;
oxa5 — 1010 0101
OR_0oxfe 1111 0000 printf("a & b = %x\n", a & b);
printf("a | b = %x\n", a | b);
printf("a ~ b = %x\n", a ~ b);
printf("~a = %x\n", ~a);
oxas — 1010 0101 Tt
XOR_0xf0 A 1111 0000 .
C bitwise operators:
& = AND
NOT exa5 —  ~ 1ele elel | = or
— ~ = XOR
~ = NOT
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Logical vs. Bitwise Operations

* The Clanguage has two types of logic operations
— Logical and Bitwise

* Logical Operators ( )
— Interpret entire value as either (non-zero) or (zero)
* Bitwise Operators ( )
— Applies the logical operation on each of the inputs
#include <stdio.h> 0000 0001=T 0000 0001
int main() && 0000 0010=T & 0000 0010
. 0000 0001=T F = 0000 0000
int x =1, y = 2;
int z1 = x 8& y; | 0008 0001=T ~ 0000 0001
int z2 = x & y;
printf("z1=%d, 22-%d\n",71,22); 0000 000O=F T = 1111 111e
. . ! @101 0111=T
char x = 1; _
if( !x ) { printf("L1\n"); } 0000 0001=T
if( ~x ) { printf("L2\n"); } i
return o; Important Note: Since !(non-zero) =0; and 10=1
} So 1135=1. And !!-109=1
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Application: Swapping via XORs

. . #include <stdio.h>
* Swapping variables can be done int main()

with a 3 'temp' variable 1
int x = @x59, y = 0xd3;
* For bitwise swapping, XORs can int temp = x;
X =y;
be used . {emp;
return 0;
}

Traditional swap with 'temp’

XOR swap

#include <stdio.h> 0101 1eel=x| | 1101 0011=y

int main()

{
int x = @x59, y = 0xd3;

return 0;

}

I USC Viterbi £+
Exercises

bool isOdd(int x)

* Determine if an integer is {
odd (w/o % operator).

bool isMultOf4(int x)

* Determine if an integer is {
a multiple of 4 (w/o % )
operator).
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Arithmetic and Logical Shifts

SHIFT OPERATIONS
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Shift Operations

» Shifts data bits either left or right

— Bits shifted out and on one side

— Usually (but not always) 0’s are shifted in on the other side
* Shifting is equivalent to multiplying or dividing by powers of
* 2 kinds of shifts

— Logical shifts (used for numbers)

— Arithmetic shifts (used for numbers)

Right Shift by 2 bits: Left Shift by 2 bits:
00001 1(00] |‘|ool|001010‘

Original Data \ / Original Data
0’s shifted in... 0’s shifted IT

‘00000011|00 00/ 00101000

Shifted by 2 bits Shifted by 2 bits
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Logical Shift vs. Arithmetic Shift

* Logical Shift * Arithmetic Shift
— Usefor___ ornon- — Usefor___ data
numeric data — Left shift will shift in 0’s
— Will always shiftin ___'s — Right shift will sign extend
whether it be a left or right the sign bit)
shift rather than shift in 0’s
* If negative number...stays

’,

by shiftingin __’s
 If positive...stays by

’

shiftingin ___’s

| - | -

Left shift Left shift

-1 | 1 |

Right shift Right shift

USC Viterbi 22
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Logical Shift

e O’s shifted in
* Only use for operations on unsigned data

— Right shift by n-bits = by 2"
— Left shift by n-bits = by 2"
0x0000000C
[0 ... 01100]=42

7N

Logical Right Shift by 2 bits: Logical Left Shift by 3 bits:

0’s shifted in... 0’s shifted in...
00 | - | 000 ‘ =
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Arithmetic Shift

* Use for operations on signed data

* Arithmetic Right Shift — replicate MSB
— Right shift by n-bits = Dividing by 2"

* Arithmetic Left Shift — shifts in O’s
— Left shift by n-bits = Multiplying by 2"

OxFFFFFFFC
‘11 1100\:-4

— T

Arithmetic Right Shift by 2 bits: Arithmetic Left Shift by 2 bits:
MSB replicated and shifted in... 0’s shifted in...
11 | I 00|=-16

Notice there is no difference between
an arithmetic and logical left shift.
We always shift in 0’s.

Notice if we shifted in 0’s (like a
logical right shift) our result would
be a positive number and the
division wouldn’t work
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Multiplying by Non-Powers of 2
plying by

* Left shifting by n-bits allow us to 17=

multiply by 2" - - - = =
Py by 16 8 4 2 1

int mull7(int x)

e But what if | have to multiply a
number by a non-power of 2 (i.e.
17*x). Can we still use shifting?

- . Break constant into a Written Code

using coefficients sall  $4, %edx
addl %edx, %eax

return 17*x;

— 17x=
* Exercise: How many adds/shift ALY
* int x16 = g
would be needed to compute 14*x o :
- Optimized Assembly
(Equivalent C)
Compiler will determine when become than constant multiplication
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Integer Division By Shifting
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(csapp237])
= Whatis 5/2? = What is -5/2?
" |s5/2=(5>>1) " |s-5/2=(-5>>1)
5=0101 -5 =
s 4 2 1 8 4 2 1
5>>1 = -55>>1 =

Main Point: Rounding when using shifting to divide a number.
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Dividing Negative Numbers

Traditional integer I } = I
rounding 25 -2 0 2 25
) v
Traditional integer division
+5 >> 1 (i.e. fractional portion)
0010
= — 5>>1
-8 4 2 1 05 0 2 25
v
_ 5 > >1 Rounding (by dropping

fractional portion)

2 1

-8 4 325 0

& [
~ =

0.5 Rounding (by dropping

fractional portion)
Main Point: Dividing numbers in the 2's complement system causes rounding to
the , not toward as desired.
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Biasing
« Summary: Dividing x / 2% by 4=1100
performing (x >> k)... -4>>1=11186 -2
— Works when OR when -5=1011
& xis a multiple of __
; -5>>1 =1101 -3
— Doesn't work when and
x is NOT a multiple of _5 1011
* |dea to solve the problem:
- some value (akaa___
value) to x before that _ _ )
will correct for the rounding 4>>1=1110 -2
issue
— Add (i.e. )
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More Examples CS:APP Practice 2.43 (tweaked)
#tdefine M /* mystery number 1 */
. -8 / 4 = (-8 >> 2) -8 =10 0 0 #define N /* mystery number 2 */
— Bias by -8>>2 =11160 -2 %nt arith(int x, int y)
(84 __)>>2 e LA
}
/* Translation of assembled code for
° _ = (- a given value of M and N *
7 / 4 - ( 7 >> 2) -2 int oitar‘ith(int X, l\i,ln‘c y)N !
— Bias by— int t = x;
- (-7 + ) >>2 -7 =1001 X fi=t?;
o -7>>2=1100 -2 if(y <o) y += 3;
y >>= 2;
° —20/162(-20 >> 4) : return x + y;
—Biasby What were M and N when the code was
—(-20+ ) >> 4 1 compiled?




