Unit 2

Integer Operations

(Arithmetic, Overflow, Bitwise Logic, Shifting)

Skills \& Outcomes

- You should know and be able to apply the following skills with confidence
- Perform addition \& subtraction in unsigned \& 2's complement system
- Determine if overflow has occurred
- Perform bitwise operations on numbers
- Perform logic and arithmetic shifts and understand how they can be used for multiplication/division
- Understand arithmetic in binary and hex

UNSIGNED BINARY ARITHMETIC

Binary Arithmetic

- Can perform all arithmetic operations (+,-, , , \div) on binary numbers
- Can use same methods as in decimal
- Still use carries and borrows, etc.
- Only now we carry when sum is 2 or more rather than 10 or more (decimal)
- We borrow 2's not 10's from other columns
- Easiest method is to add bits in your head in decimal $(1+1=2)$ then convert the answer to binary $\left(2_{10}=10_{2}\right)$

Binary Addition

- In decimal addition we carry when the sum is 10 or more
- In binary addition we carry when the sum is 2 or more
- Add bits in binary to produce a sum bit and a carry bit

Binary Addition \& Subtraction

$$
\begin{array}{ccccccc}
1 & 1 & 1 & 0 & 0 & \\
0 & 1 & 1 & 1(7) & \not X_{1} & 0 & 1
\end{array} 10(10)
$$
 \section*{\title{

Binary Addition
}}
 \section*{\title{
Binary Addition
}}

110
0110 (6)
8421
+ 0111 (7)
1101 (13)

0

0
$0110(6)$
$+0111(7)$
$1101(13)$

0
$+\quad 1$
carry bit

$$
\begin{array}{r}
\operatorname{Bin} \\
0 \\
+\quad \begin{array}{r}
1 \\
\hline 01
\end{array}
\end{array}
$$

Binary Addition

(2)

10
$0110(6)$
$+0111(7)$
$1101(13)$

(3)

110	1
$0110(6)$	1
$+0111(7)$	+1
$1101(13)$	$\underbrace{11}_{\text {carry bit }}$

Hexadecimal Arithmetic

- Same style of operations
- Carry when sum is 16 or more, etc.

$$
\begin{array}{r}
11 \\
4 D_{16} \\
+B 5_{16} \\
\hline 10
\end{array}
$$

Binary Multiplication

- Like decimal multiplication, find each partial product and shift them, then sum them up
- Multiplying two n-bit numbers yields at most a 2*n-bit product

Binary Division

- Use the same long division techniques as in decimal
- Dividing two n-bit numbers may yield an n -bit quotient and n -bit remainder
"Taking the 2's complement"

SUBTRACTION THE EASY WAY

Modulo Arithmetic

- The primary difference between how humans and computers perform arithmetic is the finite precision of computers
- As humans we can use more digits (precision) as needed
- Computers can only used a finite set of bits
- Much like the odometer on your car once you go too many miles the values will wrap from 999999 to 000000
- Essentially all computer arithmetic is modulo arithmetic
- If we have a width of w bits, then all operations are module 2^{w}
- This leads to alternate approaches to arithmetic
- Example: Consider how you could change the clock time from 5 p.m. to 3 p.m. if you can't subtract hours

Taking the Negative

- Question: Given a number in 2's complement how do we find its negative (i.e. -1 * X)
- Answer: By "taking the 2's complement"
$-0110=+6=>-6=1010$
- Operation defined as:

1. Flip/invert/not all the bits (1's complement)
2. Add 1 and drop any carry (i.e. finish with the same \# of bits as we start with)

- See next slides for example

Taking the 2's Complement

- Invert (flip) each bit (take the 1's
complement)
- 1's become 0's
- 0's become 1's
- Add 1 (drop final carry-out, if any)

Important: Taking the 2's complement is equivalent to taking the negative (negating)

Taking the 2's Complement

Taking the 2's complement
101001 again yields the original number (the operation is
symmetric)
101010
Back to original $=-22$

010101	Take the 2's complement yields the negative of a number
+	1

The same algorithms regardless of unsigned or signed ADDITION AND SUBTRACTION

Radix Complement

When using modulo arithmetic, subtraction can always be converted to addition.

2's Complement Addition/Subtraction

- Addition
- Sign of the numbers do not matter
- Add column by column
- Drop any final carry-out
- The secret to modulo arithmetic
- Subtraction
- Any subtraction (A-B) can be converted to addition ($A+-B$) by taking the 2's complement of B
$-(A-B)$ becomes ($A+\sim B+1$)
- Drop any carry-out
- The secret to modulo arithmetic

2's Complement Addition

- No matter the sign of the operands just add as normal
- Drop any extra carry out

0000
$0011(3)$
$+0010(2)$
$0101(5)$

Drop final carry-out

$$
\begin{array}{r}
1110 \\
0011 \\
+\quad 1110(-2) \\
\hline 0001
\end{array}
$$

$$
1100
$$

$$
1101(-3)
$$

$$
+1110(-2)
$$

$$
1011(-5)
$$

Unsigned and Signed Addition

- Addition process is the same for both unsigned and signed numbers
- Add columns right to left
- Examples:

$$
\begin{array}{rrr}
11 & \text { If unsigned } \frac{\text { If signed }}{} \\
1001 & (9) & (-7) \\
+0011 & (3) & (3) \\
\hline 1100 & (12) & (-4)
\end{array}
$$

2's Complement Subtraction

- Take the 2's complement of the subtrahend (bottom \#) and add to the original minuend (top \#)
- Drop any extra carry out

$$
\begin{array}{r}
0011(+3) \\
-\quad 0010(+2)
\end{array}
$$

$$
\begin{array}{r}
1101(-3) \\
-\quad 1110(-2)
\end{array}
$$

Unsigned and Signed Subtraction

- Subtraction process is the same for both unsigned and signed numbers
- Convert A - B to A + Comp. of B
- Drop any final carry out
- Examples:

Important Note

- Almost all computers use 2's complement because...
- The same addition and subtraction algorithm can be used on unsigned and 2's complement (signed) numbers
- Thus we only need one set of circuitry (HW component) to perform operations on both unsigned and signed numbers

USCViterbi ${ }_{2}^{2.25}$

School of Engineering

OVERFLOW

Overflow

- Overflow occurs when the result of an arithmetic operation is too large to be represented with the given number of bits
- Conditions and tests to determine overflow depend on the system being used
- Different algorithms for detecting overflow based on unsigned or signed

Unsigned Overflow

$$
10+7=17
$$

With 4-bit unsigned numbers we can only represent $0-15$. Thus, we say overflow has occurred.

2's Complement Overflow

$$
\begin{gathered}
5+7=+12 \\
-6+-4=-10
\end{gathered}
$$

With 4-bit 2's complement numbers we can only represent -8 to +7 . Thus, we say overflow has occurred.

Overflow occurs when you cross this discontinuity

Overflow in Addition

- Overflow occurs when the result of the addition cannot be represented with the given number of bits.
- Tests for overflow:
- Unsigned: if Cout = 1 [result smaller than inputs]
- Signed: if $p+p=n$ or $n+n=p$ [result has inappropriate sign]

11	If unsigned	If signed		01	If unsigned
1101	(13)	(-3)	0110	(6)	$\frac{\text { If signed }}{(6)}$
+0100	(4)	(4)	+0101	(5)	(5)
0001	(17)	$(+1)$		1011	(11)

Overflow in Subtraction

- Overflow occurs when the result of the subtraction cannot be represented with the given number of bits.
- Tests for overflow:
- Unsigned: if Cout = 0 [expect negative result]
- Signed: if $\mathrm{p}+\mathrm{p}=\mathrm{n}$ or $\mathrm{n}+\mathrm{n}=\mathrm{p}$ [result has inappropriate sign]

MULTIPLICATION AND DIVISION

Binary Multiplication

- Multiplying two n-bit numbers yields at most a 2*n-bit product
- Multiplication operations on a modern processor can take 3-5 times longer than addition operations

Binary Division

- Dividing two n-bit numbers may yield an n-bit quotient and n-bit remainder
- Division operations on a modern processor can take 17-41 times longer than addition operations

Unsigned Multiplication Review

- Same rules as decimal multiplication
- Multiply each bit of Q by M shifting as you go
- An m-bit * n-bit mult. produces an m+n bit result
- Notice each partial product is a shifted copy of M or 0 (zero)

$$
\begin{aligned}
& 1010 \text { M (Multiplicand) } \\
& \text { * } 1011 \text { Q (Multiplier) } \\
& \begin{array}{r}
1010 _ \\
0000 \text { PP(Partial } \\
\text { Products) }
\end{array} \\
& \frac{+1010}{01101110} \mathrm{P} \text { (Product) }
\end{aligned}
$$

Signed Multiplication Techniques

- When multiplying signed (2's comp.) numbers, some new issues arise
- Must sign extend partial products (out to $2 n$ bits)

Without Sign Extension... Wrong Answer!

$$
\begin{aligned}
1001 & =-7 \\
* 0110 & =+6 \\
\hline 0000 & \\
1001- & \\
+0001-000 & =+54
\end{aligned}
$$

USCVit ques

Signed Multiplication Techniques

- Also, must worry about negative multiplier
- MSB of multiplier has negative weight
- If MSB=1, multiply by -1 (i.e. take 2's comp. of multiplicand)

With Sign Extension but w/o consideration of MSB...
Wrong Answer!

With Sign Extension and w/ consideration of MSB... Correct Answer!

Main Point: Signed and Unsigned Multiplication require different techniques...Thus different instructions.

USCViterbi ${ }^{2.37}$

School of Engineering

BITWISE \& LOGIC OPERATIONS

Modifying Individual Bits

- Suppose we want to change only a single bit (or a few bits) in a variable [i.e. char v;] without changing the other bits
- Set the LSB of v to $1 \mathrm{w} / \mathrm{o}$ affecting other bits
- Would this work? v = 1;
- Set the upper 4 bits of v to $1111 \mathrm{w} / \mathrm{o}$ affecting other bits
- Would this work? v = 0xf0;
- Clear the lower 2 bits of v to $00 \mathrm{w} / \mathrm{o}$ affecting other bits
- Would this work? v = 0;
- No!!! Assignment changes ALL bits in a variable
- Because the smallest unit of data in computers is usually a byte, manipulating individual bits requires us to use BITWISE OPERATIONS.

7	6	5	4	3	2	1	0
?	?	?	?	?	?	?	?
-byte variab							

$?$	$?$	$?$	$?$	$?$	$?$	$?$	1

Desired v (change LSB to 1)

```
1 1 1 1 1 1 ? ? ? ? ? 
    Desired v
    (change upper 4 bits to
        1111)
```

- AND = \&
$-O R=1$
- XOR = ^
- NOT = ~

(change lower 2 bits to 00)

Using Bitwise Ops to Change Bits

- ANDs can be used to clear a bit (make it ' 0 ') or leave it unchanged
- ORs can be used to set a bit (make it '1') or leave it unchanged
- XORs can be used to invert a bit (flip it) or leave it unchanged

X	Y	AND	$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \hline 1 \end{aligned}$
0	0	0	
0	1	0	
1	0	0	¢
1	1	1	ก
0 AND $y=0$			
1 AND $y=y$			
y AND $y=y$			

X	Y	OR
0	0	0
0	1	1
1	0	1
1	1	1
$\begin{aligned} & 0 \text { OR } y=y \\ & 1 \text { OR } y=1 \\ & y \text { OR } y=1 \end{aligned}$		

Identity	0 OR $Y=Y$	1 AND $Y=Y$
Null Ops	1 OR Y $=1$	0 AND $Y=0$
Idempotency	Y OR $Y=Y$	Y AND $Y=Y$

Bitwise Operations

- The C AND , OR, XOR, NOT bitwise operations perform the operation on each pair of bits of 2 numbers

0xa5	\longrightarrow	10100101
AND 0xf0		\& 11110000
0×30		10100000
0×25	\rightarrow	10100101
OR 0xf0		11110000
$0 x f c$		11110101
0xa5	\longrightarrow	10100101
XOR 0xf0		^ 11110000
0x55	\longleftarrow	01010101
NOT 0xa5	\longrightarrow	~ 10100101
0x5a	\leftarrow	01011010

```
#include <stdio.h> // C-Library
                                    // for printf()
int main()
{
    char a = 0xa5;
    char b = 0xf0;
    printf("a & b = %x\n", a & b);
    printf("a | b = %x\n", a | b);
    printf("a ^ b = %x\n", a ^ b);
    printf("~a = %x\n", ~a);
    return 0;
}
C bitwise operators:
\[
\begin{aligned}
\& & =\text { AND } \\
\mid & =\text { OR } \\
\wedge & =\text { XOR } \\
\sim & =\text { NOT }
\end{aligned}
\]
```


Logical vs. Bitwise Operations

CS:APP 2.1.8

- The C language has two types of logic operations
- Logical and Bitwise
- Logical Operators (\&\&, ||, !)
- Interpret entire value as either True (non-zero) or False (zero)
- Bitwise Operators (\&,|, ^, ~)
- Applies the logical operation on each pair of bits of the inputs

```
#include <stdio.h>
int main()
{
    int x = 1, y = 2;
    int z1 = x && y;
    int z2 = x & y;
    printf("z1=%d, z2=%d\n",z1,z2);
    char x = 1;
    if( !x ) { printf("L1\n"); }
    if( ~x ) { printf("L2\n"); }
    return 0;
}
```


$$
\begin{aligned}
& \sim 0000 \quad 0001 \\
& =11111110
\end{aligned}
$$

$$
\frac{!!0101 \quad 0111=T}{0000 \quad 0001=T}
$$

Important Note: Since !(non-zero) $=0$; and $!0=1$ So !!35=1. And !!-109=1

Application: Swapping via XORs

- Swapping variables can be done with a $3^{\text {rd }}$ 'temp' variable
- For bitwise swapping, XORs can be used

```
#include <stdio.h>
int main()
{
    int x = 0x59, y = 0xd3;
    int temp = x;
    x = y;
    y = temp;
    return 0;
}
```

Traditional swap with 'temp'

XOR swap

```
#include <stdio.h>
int main()
{
    int x = 0x59, y = 0xd3;
    x = x ^ y;
    y = x ^ y;
    x = x ^ y;
    return 0;
}
```

0101 1001=x	
$01011001=x$ $\wedge \quad 11010011=y$ $10001010=x$	
$10001010=x$ $\wedge \quad 01011001=y$ $11010011=x$	

1101 0011=y

$10001010=x$
$1101 \quad 0011=y$
$0101 \quad 1001=y$

Exercises

- Determine if an integer is odd (w/o \% operator).
- Determine if an integer is a multiple of 4 ($\mathrm{w} / \mathrm{o} \%$ operator).

```
bool isOdd(int x)
{
    /* Isolate the lowest bit */
    return x&1;
}
```

```
bool isMultOf4(int x)
{
    /* Check if 2 LSBs are both 0 */
    return !(x&3);
}
```


Arithmetic and Logical Shifts

SHIFT OPERATIONS

Shift Operations

- Shifts data bits either left or right
- Bits shifted out and dropped on one side
- Usually (but not always) 0's are shifted in on the other side
- Shifting is equivalent to multiplying or dividing by powers of 2
- 2 kinds of shifts
- Logical shifts (used for unsigned numbers)
- Arithmetic shifts (used for signed numbers)

Right Shift by 2 bits:

Shifted by 2 bits

Left Shift by 2 bits:

Logical Shift vs. Arithmetic Shift

- Logical Shift
- Use for unsigned or nonnumeric data
- Will always shift in 0's whether it be a left or right shift

Left shift

Right shift

- Arithmetic Shift
- Use for signed data
- Left shift will shift in 0's
- Right shift will sign extend (replicate the sign bit) rather than shift in 0's
- If negative number...stays negative by shifting in 1's
- If positive...stays positive by shifting in 0's

Logical Shift

- O's shifted in
- Only use for operations on unsigned data
- Right shift by n-bits $=$ Dividing by $2^{\text {n }}$
- Left shift by n-bits $=$ Multiplying by 2^{n}

Logical Right Shift by 2 bits:
0's shifted in...

$$
\frac{00 \ldots 0011}{0 \times 00000003}=+3
$$

Logical Left Shift by 3 bits:

Arithmetic Shift

- Use for operations on signed data
- Arithmetic Right Shift - replicate MSB
- Right shift by n-bits $=$ Dividing by 2^{n}
- Arithmetic Left Shift - shifts in 0's
- Left shift by n-bits = Multiplying by 2^{n}

Arithmetic Right Shift by 2 bits:
MSB replicated and shifted in...

Notice if we shifted in 0 's (like a logical right shift) our result would be a positive number and the division wouldn't work

Arithmetic Left Shift by 2 bits:

> 0's shifted in...

Notice there is no difference between an arithmetic and logical left shift.

We always shift in 0's.

Multiplying by Non-Powers of 2

CS:APP 2.3.6

- Left shifting by n-bits allow us to multiply by 2^{n}
- But what if I have to multiply a number by a non-power of 2 (i.e. $\left.17^{*} \mathrm{x}\right)$. Can we still use shifting?
- Yes. Break constant into a sum using power of 2 coefficients
$-17 x=16 x+1 x$
- Exercise: How many adds/shift would be needed to compute $14^{*} x$
$-8 x+4 x+2 x=3$ shifts, 2 adds OR
$-16 x-2 x=2$ shift and 1 add

Written Code

```
sall $4, %edx
    addl %edx, %eax
```

```
int mul17(int x)
{
    int x16 = x << 4;
    return x16 + x;
}
```

Optimized Assembly (Equivalent C)

Integer Division By Shifting

- What is $5 / 2$?
- +2
- Is $5 / 2$ = ($5 \gg 1$)
- Yes

$$
\begin{aligned}
& 5=\begin{array}{|llll|}
\hline 0 & 1 & 0 & 1 \\
\hline-8 & 4 & \frac{2}{2} & 1 \\
-1 &
\end{array} \\
& 5 \gg 1=\begin{array}{|lllll}
\begin{array}{|lllll}
0 & 0 & 1 & 0 & 1 \\
-8 & 4 & 2 & 1 & \frac{1}{0.5}
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

- What is $-5 / 2$?
- -2
- Is $-5 / 2=(-5 \gg 1)$
- No

$-5=$	1	0	1	1
-8	$\frac{4}{4}$	$\frac{2}{2}$	1	

$-5 \gg 1=$| $\left.\begin{array}{\|lllll}1 & 1 & 0 & 1 & 1 \\ -8 & \frac{4}{4} & \frac{1}{2} & \frac{1}{1} & \frac{1}{0.5}\end{array}\right)$ |
| :---: | :---: | :---: | :---: | :---: |

Main Point: Rounding fails when using shifting to divide a negative number.

usC

Dividing Negative Numbers

Biasing

- Summary: Dividing $x / 2^{k}$ by performing ($x \gg k$)...
- Works when $x \geq 0$ OR when $x<0 \& x$ is a multiple of 2^{k}
- Doesn't work when $x<0$ and x is NOT a multiple of 2^{k}
- Idea to solve the problem:
- Add some value (aka a bias value) to x before shifting that will correct for the rounding issue
- Add 2k-1 (i.e. k ones)

$$
\begin{aligned}
& -4=1100 \\
& -4 \gg 1=1110-2 \\
& -5=1011 \\
& -5 \gg 1=11011-3 \\
& \begin{array}{lllll}
-5 & 1 & 0 & 1 & 1
\end{array} \\
& \begin{array}{llll}
+1 & + & & 1 \\
\hline & 10 & 0
\end{array} \\
& -4 \gg 1=1110-2
\end{aligned}
$$

More Examples

- $-8 / 4=(-8 \gg 2)$
- Bias by $2^{2}-1=3$
$-(-8+3) \gg 2$
- $-7 / 4=(-7 \gg 2)$
- Bias by $2^{2}-1=3$
$-(-7+3) \gg 2$
- $-20 / 16=(-20 \gg 4)$
- Bias by $2^{4}-1=15$
$-(-20+15) \gg 4$

$$
\begin{array}{rllllll}
-8 & = & 1 & 0 & 0 & 0 & \\
-8 \gg 2 & = & 1 & 1 & 1 & 0 & -2 \\
-8 & & 1 & 0 & 0 & 0 & \\
\frac{+3}{-5} & + & 1 & 0 & 1 & 1 & \\
-5 \gg 2 & = & 1 & 1 & 0 & 0 & -2 \\
-5 & & 1 & 0 & 0 & 1 & \\
-7 & & 1 & 1 & & \\
-7 \gg 2 & = & 1 & 1 & 0 & 0 & -2 \\
-7 & & 1 & 0 & 0 & 1 & \\
+\frac{+3}{-4} & + & & 1 & 1 & \\
-4 & 1 & 0 & 0 & \\
-4>2 & = & 1 & 1 & 1 & 1 & -1
\end{array}
$$

CS:APP Practice 2.43 (tweaked)

```
#define M /* mystery number 1 */
#define N /* mystery number 2 */
int arith(int x, int y)
{
    int result = x*M + y/N;
    return result;
}
/* Translation of assembled code for
    a given value of M and N */
int optarith(int x, int y)
{
    int t = x;
    x <<= 5;
    x -= t;
    if(y< 0) y += 3;
    y >>= 2;
    return x + y;
}
```

What were \mathbf{M} and N when the code was compiled? ($\mathrm{M}=31, \mathrm{~N}=4$)

