Skills \& Outcomes

Unit 1

Integer Representation

DIGITAL REPRESENTATION

Information Representation

- All information in a computer system is represented as bits
- Bit = \qquad) $=0$ or 1
- A single bit is can only represent 2 values so to represent a wider variety of options we use a
\qquad
- Commonly sequences are 8 -bits (aka a "byte"), 16-, 32- or 64-bits
- Kinds of information
- Numbers, text, code/instructions, sound, images/videos

Binary Representation Systems

- Given a sequence of 1's and 0's, you need to know the representation system being used, before you can understand the value of those 1's and 0's.
- Information (value) = \qquad

- Integer Systems
- Unsigned
- Unsigned (Normal) binary
- Signed
- Signed Magnitude
- 2's complement
- Excess-N*
- 1's complement*
- Floating Point
- For very large and small (fractional) numbers
- Codes
- Text
- ASCII / Unicode
- Decimal Codes
- BCD (Binary Coded Decimal) / (8421 Code)

Data Representation

- In C/C++ variables can be of different types and sizes - Integer Types on 32-bit (64-bit) architectures

C Type (Signed)	C Type (Unsigned)	Bytes	Bits	x86 Name
char	unsigned char	1	8	byte
short	unsigned short	2	16	
int / int32_t ${ }^{+}$	unsigned / uint32_t ${ }^{+}$	4	32	
long	unsigned long	$4(8)$	$32(64)$	
long long / int64_t ${ }^{+}$	unsigned long long / uint64_t ${ }^{+}$	8	64	
char*	-	$4(8)$	$32(64)$	
int*	-	$4(8)$	$32(64)$	

- Floating Point Types
$t=$ defined in stdint. h

C Type	Bytes	Bits	x86 Name
float	4	32	single
double	8	64	double

Number Systems

- Unsigned binary follows the rules of positional number systems
- A positional number systems consist of

1. \qquad
2. \qquad coefficients [\qquad _]

- Humans: Decimal (Base 10): 0,1,2,3,4,5,6,7,8,9
- Computers: Binary (Base 2): 0,1
- Human systems for working with computer systems (shorthand for human to read/write binary)
- Octal (Base 8): 0,1,2,3,4,5,6,7
- Hexadecimal (Base 16): \qquad

UNSIGNED BINARY TO DECIMAL

USCViterbi

Anatomy of a Decimal Number

- A number consists of a string of explicit coefficients (digits).
- Each coefficient has an implicit place value which is a power of the base.
- The value of a decimal number (a string of decimal coefficients) is the sum of each coefficient times it place value

$(3.52)_{10}=3^{*} 10^{0}+5^{*}$ \qquad $+2^{*}$ \qquad $=3.52$

Binary Examples

$$
\begin{aligned}
& \frac{(1001}{8} \frac{0}{4} \frac{1}{1} \frac{1)_{2}}{5}= \\
& (10110001)_{2}= \\
& 128 \\
& \frac{1}{32} \frac{1}{16}
\end{aligned}
$$

General Conversion From Unsigned Base r to Decimal

- An unsigned number in base r has place values/weights that are the powers of the base
- Denote the coefficients as: a_{i}
$\left(a_{3} a_{2} a_{1} a_{0} \cdot a_{-1} a_{-2}\right)_{r}=a_{3} * r^{3}+a_{2} * r^{2}+a_{1} * r^{1}+a_{0} * r^{0}+a_{-1} * r^{-1}+a_{-2} * r^{-2}$

Left-most digit $=\quad$ Right-most digit $=$
Most Significant Least Significant
Digit (MSD) Digit (LSD)

$$
\underset{\text { Numberin baser }}{\mathbf{N}_{\mathbf{r}}=>} \quad=>\mathbf{D}_{\text {Decimal Equivaent }}
$$

$(746)_{8}=$
$=$
$(1 \mathrm{~A} 5)_{16}=$
$=$

$$
\begin{aligned}
(\mathrm{AD} 2)_{16}= & 10^{*} 16^{2}+13^{*} 16^{1}+2 * 16^{0} \\
& =2560+208+2=(2770)_{10}
\end{aligned}
$$

UNSIGNED DECIMAL TO BINARY

Decimal to Unsigned Binary

- To convert a decimal number, x, to binary:
- Only coefficients of 1 or 0 . So simply find place values that add up to the desired values, starting with larger place values and proceeding to smaller values and place a 1 in those place values and 0 in all others

For 25_{10} the place value $\mathbf{3 2}$ is too large to include so we include 16. Including 16 means we have to make 9 left over. Include 8 and 1.

Decimal to Unsigned Binary

$$
\begin{aligned}
& 73_{10}=\quad \frac{1}{128} \frac{-}{64} \frac{-}{32} \frac{-}{16} \frac{-}{4} \frac{1}{1} \\
& 87_{10}= \\
& 145_{10}= \\
& 0.625_{10}= \\
& \begin{array}{lllll}
& \overline{.5} & \overline{.25} & \overline{.125} & \overline{.0625}
\end{array} \quad \overline{.03125}
\end{aligned}
$$

- To convert a decimal number, x, to base r :
- Use the place values of base r (powers of r). Starting with largest place values, fill in coefficients that sum up to desired decimal value without going over.

UNIQUE COMBINATIONS

Powers of 2

Unique Combinations

$2^{0}=1$
$2^{1}=2$
$2^{2}=4$
$2^{3}=8$
$2^{4}=16$
$2^{5}=32$
$2^{6}=64$
$2^{7}=128$
$2^{8}=256$
$2^{9}=512$
$2^{10}=1024$

- Given n digits of base r, how many unique numbers can be formed? r^{n}
- What is the range? [0 to $r^{n}-1$]

2 -digit, decimal numbers ($\mathrm{r}=10, \mathrm{n}=2$)					$\begin{gathered} 100 \text { combinations: } \\ 00-99 \end{gathered}$
			0-9	0-9	
3-digit, decimal numbers ($\mathrm{r}=10, \mathrm{n}=3$)			-	-	1000 combinations: $000-999$
4-bit, binary numbers ($r=2, n=4$)					$\begin{aligned} & 16 \text { combinations: } \\ & 0000-1111 \end{aligned}$
	0-1	0-1	0-1	0-1	
6-bit, binary numbers $(r=2, n=6)$	-	-	-	-	64 combinations: 000000-111111

Main Point: Given n digits of base r , rn^{n} unique numbers can be made with the range [$0-\left(\mathrm{r}^{\mathrm{n}}-1\right)$]

Range of C Data Types

- For a given integer data type we can find its range by raising 2 to the $n, 2^{n}$ (where $n=$ number of bits of the type)
- For signed representations we break the range in half with half negative and half positive (0 is considered a positive number by common integer convention)

Bytes	Bits	Type	Unsigned Range	Signed Range
1	8	[unsigned] char	0 to 255	-128 to +127
2	16	[unsigned] short	0 to 65535	-32768 to +32767
4	32	[unsigned] int	0 to $4,294,967,295$	$-2,147,483,648$ to $+2,147,483,648$
8	8	[unsigned] long long	0 to $18,446,744,073,709,551,615$	$-9,223,372,036,854,775,808$ to $+9,223,372,036,854,775,807$
$4(8)$	$32(64)$	char*	0 to $18,446,744,073,709,551,615$	

- How will I ever remember those ranges?
- I wish I had an easy way to approximate those large numbers!

Approximating Large Powers of 2

- Often need to find decimal approximation of a large powers of $2 \quad 2^{16}=2^{6 *} 2^{10}$ like $2^{16}, 2^{32}$, etc.

```
216}=\mp@subsup{2}{}{6 * 2 }\mp@subsup{2}{}{10
```

- Use following approximations:
$-2^{10} \approx$ \qquad .
$2^{24}=$
- 2^{20} \qquad
$-2^{40} \approx$ \qquad
$\begin{aligned} & 2^{28}= \\ & \approx\end{aligned}$
- For other powers of 2, decompose into product of 2^{10} or 2^{20} or 2^{30} and a power of 2 that is less than $2^{10} \quad 2^{32}=$
- 16-bit word: \qquad numbers
- 32-bit dword: \qquad numbers
- 64-bit qword: \qquad million trillion

Signed numbers

CONVERTING SIGNED NUMBERS TO DECIMAL

2's Complement Range

- Given n bits...
- Max positive value $=$ \qquad
- Includes all $\mathrm{n}-1$ positive place values
- Max negative value $=$ \qquad
- Includes only the negative MSB place value Range with n-bits of 2's complement

$$
\left[-2^{n-1} \text { to }+2^{n-1}-1\right]
$$

- Side note - What decimal value is $111 \ldots 11$?

Unsigned and Signed Variables

- In C, unsigned variables use unsigned binary (normal power-of-2 place values) to represent numbers

$$
\frac{1}{128} \frac{0}{64} \frac{0}{32} \frac{1}{16} \frac{0}{8} \frac{0}{4} \frac{1}{2} \frac{1}{1}=+147
$$

- In C, signed variables use the 2's complement system (Neg. MSB weight) to represent numbers

$$
\frac{1}{-128} \frac{0}{64} \frac{0}{32} \frac{1}{16} \frac{0}{8} \frac{0}{4} \frac{1}{2} \frac{1}{1}=-109
$$

IMPORTANT NOTE

- All computer systems use the 2 's complement system to represent signed integers!
- So from now on, if we say an integer is signed, we are actually saying it uses the 2's complement system unless otherwise specified
- Other systems like "signed magnitude" or "1's complement" exist but will not be used for integers

Zero and Sign Extension

- Extension is the process of increasing the number of bits used to represent a number without changing its value

Unsigned $=$ Zero Extension (Always add leading 0's):

2's complement $=$ Sign Extension (Replicate sign bit):

$$
\begin{array}{ll}
\text { pos. } & 011010=_011010 \\
\text { neg. } & 110011=_110011
\end{array} \begin{aligned}
& \text { maty it just repeated as } \\
& \text { many times as necessary }
\end{aligned}
$$

Zero and Sign Truncation

- Truncation is the process of decreasing the number of bits used to represent a number without changing its value

Unsigned = Zero Truncation (Remove leading 0's):

$$
\text { 20111011 = } 111011 \quad \begin{gathered}
\text { Decrease an 8-bit number to } 6 \text {-bit } \\
\text { number by truncating 0's. Can't } \\
\text { remove a '1' because value is changed }
\end{gathered}
$$

2's complement $=$ Sign Truncation (Remove \qquad of sign bit):

```
pos. \Q0011010 =
neg. 籼10011=
```


neg. $>K 10011=\quad \begin{gathered}\text { Any copies of the MSB can be } \\ \text { removed without changing the } \\ \text { numbers value. Be careful not to } \\ \text { change the sign by cutting off }\end{gathered}$ ALL the sign bits

SHORTHAND FOR BINARY

Binary and Hexadecimal

- Hex is base 16 which is 2^{4}
- 1 Hex digit (?) ${ }_{16}$ can represent: \qquad
- 4 bits of binary (? ? ? ?) ${ }_{2}$ can represent:
- Conclusion...
\qquad Hex digit $=$ bits

Binary to Hex

- Make groups of 4 bits starting from radix point and working outward
- Add 0's where necessary
- Convert each group of 4 to an octal digit

Hex to Binary

- Expand each hex digit to a group of 4 bits

$$
14 \mathrm{E} . \mathrm{C}_{16}
$$

$$
\text { D93.8 } 8_{16}
$$

Hexadecimal Representation

- Since values in modern computers are many bits, we use hexadecimal as a shorthand notation (4 bits = 1 hex digit)
- $11010010=$ D2 hex or 0xD2 if you write it in C/C++
$-0111011011001011=76 C B$ hex or 0x76CB if you write it in C/C++

Interpreting Hex Strings

- What does the following hexadecimal represent?
- Just like binary, you must know the underlying representation system being used before you can interpret a hex value
- Information (value) $=$ Hex + Context (System)
- For now, best be is to convert to \qquad , then translate

$$
0 \times 41=?
$$

65 decimal

inc \%ecx
(Add 1 to the ecx register)

Hexadecimal \& Sign

- If a number is represented in 2 's complement (e.g. 10010110) then the MSB of its binary representation would correspond to:
- $0=$ Positive
- 1 = Negative
- If that same 2's complement number were viewed as hex (e.g. 0×96) how could we tell if the corresponding number is positive or negative?
- MSD of 0-7 = Positive
- MSD of 8-F = Negative

Hex - Binary - Sign $0=0000=$ Pos. $1=0001=$ Pos. $2=0010=$ Pos. $3=0011=$ Pos. $3=011=$ Pos.
$4=0100=$ Pos. $4=0100=$ Pos.
$5=0101=$ Pos. $5=0101=$ Pos.
$6=0110=$ Pos. $7=0111=$ Pos. $8=1000=\mathrm{Neg}$. $8=1000=$ Neg.
$9=1001=$ Neg.
$9=1001=\mathrm{Neg}$.
$\mathrm{A}=1010=\mathrm{Neg}$.
$A=1010=$ Neg.
$\begin{array}{ll}B=1011 & =\text { Neg. } \\ C=1100 & =\text { Neg }\end{array}$
$C=1100=$ Neg.
$D=1101=$ Neg.
$E=1110=$ Neg.
$\mathrm{E}=1110=\mathrm{Neg}$.
$\mathrm{F}=1111=\mathrm{Neg}$.

Implicit and Explicit Casting

- Use your understanding of unsigned and 2's complement to predict the output
- Notes: $2^{16}=65536$
- unsigned short range: 0 to 65535
- signed short range: -32768 to +32768

Implicit and Explicit Casting

- Use your understanding of zero and sign extension to predict the output
int main()
short int $v=$ excfc7; /* -12345 */ unsigned short uv = 0xcfc7; /* 53191 * int vi = v; /* ??? */ rigned uvi = uv; /* ??? *) return 0 ;

Expected Output:
vi $=$ ffffcfc7, uvi $=$
int main()
int $\mathrm{x}=53191$; /* 0xcfc7 *
short $\mathrm{sx}=\mathrm{x}$;
char $z=x ;$
printf("sx = \%d, y = \%d ", sx, y); printf("z = \%d\n", z) return 0;

Expected Output:
sx $=-12345, y=-12345, z=$

- Casting can be done implicitly and explicitly
- Casting from one system to another applies a new "interpretation" (pair of glasses) on the same bits
- Casting from one size to another will perform extension or truncation (based on the system)

