
1.1

Unit 1

Integer Representation

1.2

Skills & Outcomes

• You should know and be able to apply the
following skills with confidence

– Convert an unsigned binary number to and from
decimal

– Understand the finite number of combinations
that can be made with n bits

– Convert a signed (2's complement system) binary
number to and from decimal

– Convert bit sequences to and from hexadecimal

– Predict the outcome & perform casting operations

1.3

DIGITAL REPRESENTATION

1.4

Information Representation

• All information in a computer system is represented as
bits

– Bit = (Binary digit) = 0 or 1

• A single bit is can only represent 2 values so to
represent a wider variety of options we use a
sequence of bits (e.g. 11001010)

– Commonly sequences are 8-bits (aka a "byte"), 16-, 32- or
64-bits

• Kinds of information

– Numbers, text, code/instructions, sound, images/videos

1.5

Interpreting Binary Strings

• Given a sequence of 1’s and 0’s, you need to know the
representation system being used, before you can
understand the value of those 1’s and 0’s.

• Information (value) = Bits + Context (System)

01000001 = ?

65 decimal ‘A’ASCII

inc %ecx
(Add 1 to the ecx register)

Unsigned

Binary system ASCII

systemx86 Assembly

Instruction

1.6

Binary Representation Systems

• Integer Systems
– Unsigned

• Unsigned (Normal) binary

– Signed

• Signed Magnitude

• 2’s complement

• Excess-N*

• 1’s complement*

• Floating Point
– For very large and small

(fractional) numbers

• Codes
– Text

• ASCII / Unicode

– Decimal Codes

• BCD (Binary Coded Decimal)
/ (8421 Code)

* = Not covered in this class

1.7

Data Representation

• In C/C++ variables can be of different types and sizes
– Integer Types on 32-bit (64-bit) architectures

– Floating Point Types

C Type (Signed) C Type (Unsigned) Bytes Bits x86 Name

char unsigned char 1 8 byte

short unsigned short 2 16 word

int / int32_t † unsigned / uint32_t † 4 32 double word

long unsigned long 4 (8) 32 (64) double (quad) word

long long / int64_t † unsigned long long / uint64_t † 8 64 quad word

char* - 4 (8) 32 (64) double (quad) word

int* - 4 (8) 32 (64) double (quad) word

C Type Bytes Bits x86 Name

float 4 32 single

double 8 64 double

† = defined in stdint.h

1.8

OVERVIEW

1.9

UNSIGNED BINARY TO DECIMAL
Using power-of-2 place values

1.10

Number Systems

• Unsigned binary follows the rules of positional number systems

• A positional number systems consist of

1. A base (radix) r

2. r coefficients [0 to r-1]

• Humans: Decimal (Base 10): 0,1,2,3,4,5,6,7,8,9

• Computers: Binary (Base 2): 0,1

• Human systems for working with computer systems (shorthand
for human to read/write binary)

– Octal (Base 8): 0,1,2,3,4,5,6,7

– Hexadecimal (Base 16): 0-9,A,B,C,D,E,F (A thru F = 10 thru 15)

1.11

Anatomy of a Decimal Number
• A number consists of a string of explicit coefficients (digits).

• Each coefficient has an implicit place value which is a power
of the base.

• The value of a decimal number (a string of decimal
coefficients) is the sum of each coefficient times it place value

Explicit coefficients
Implicit place values

radix

(base)

(934)10 = 9*102 + 3*101 + 4*100 = 934

(3.52)10 = 3*100 + 5*10-1 + 2*10-2 = 3.52

1.12

Anatomy of an Unsigned Binary Number

• Same as decimal but now the coefficients
are 1 and 0 and the place values are the
powers of 2

(1011)2 = 1*23 + 0*22 + 1*21 + 1*20

Least Significant

Bit (LSB)

Most Significant

Digit (MSB)

coefficients
place values

= powers of 2

radix

(base)

1.13

Binary Examples

(1001.1)2 = 8 + 1 + 0.5 = 9.510
.51248

(10110001)2 = 128 + 32 + 16 + 1 = 17710
1632128 1

1.14

General Conversion From Unsigned Base r
to Decimal

• An unsigned number in base r has place
values/weights that are the powers of the base

• Denote the coefficients as: ai

Left-most digit =

Most Significant

Digit (MSD)

Right-most digit =

Least Significant

Digit (LSD)

Nr => Σi(ai*r
i) => D10

Number in base r Decimal Equivalent

(a3a2a1a0.a-1a-2)r = a3*r3 + a2*r2 + a1*r1 + a0*r0 + a-1*r-1 + a-2*r-2

1.15

Examples

(746)8 = 7*82 + 4*81 + 6*80

= 448 + 32 + 16 = 48610

(1A5)16 = 1*162 + 10*161 + 5*160

= 256 + 160 + 5 = 42110

(AD2)16 = 10*162 + 13*161 + 2*160

= 2560 + 208 + 2 = (2770)10

1.16

UNSIGNED DECIMAL TO BINARY
"Making change"

1.17

Decimal to Unsigned Binary

• To convert a decimal number, x, to binary:

– Only coefficients of 1 or 0. So simply find place values
that add up to the desired values, starting with larger
place values and proceeding to smaller values and place
a 1 in those place values and 0 in all others

16 8 4 2 1

2510 = 1 1 1

32

For 2510 the place value 32 is too large to include so we include

16. Including 16 means we have to make 9 left over. Include 8

and 1.

0 00

1.18

Decimal to Unsigned Binary

7310=
128 64 32 16 8 4 2 1

.5 .25 .125 .0625 .03125

0 1 0 0 1 0 0 1

0 1 0 1 0 1 1 1

1 0 0 1 0 0 0 1

1 0 1 0 0

8710=

14510=

0.62510=

1.19

Decimal to Another Base

• To convert a decimal number, x, to base r:

– Use the place values of base r (powers of r). Starting
with largest place values, fill in coefficients that sum up
to desired decimal value without going over.

16 1

7510 = 4 B

256

0 hex

1.20

UNIQUE COMBINATIONS
The 2n rule

1.21

Powers of 2

20 = 1
21 = 2
22 = 4
23 = 8

24 = 16
25 = 32
26 = 64

27 = 128
28 = 256
29 = 512

210 = 1024

512 256 128 64 32 16 8 4 2 11024

1.22

Unique Combinations

• Given n digits of base r, how many unique numbers
can be formed? rn

– What is the range? [0 to rn-1]

Main Point: Given n digits of base r, rn unique numbers can

be made with the range [0 - (rn-1)]

2-digit, decimal numbers (r=10, n=2)

3-digit, decimal numbers (r=10, n=3)

4-bit, binary numbers (r=2, n=4)

6-bit, binary numbers

(r=2, n=6)

0-90-9

100 combinations:

00-99

0-10-10-10-1

1000 combinations:

000-999

16 combinations:

0000-1111

64 combinations:

000000-111111

1.23

Range of C Data Types

• For a given integer data type we can find its range by raising 2
to the n, 2n (where n = number of bits of the type)
– For signed representations we break the range in half with half

negative and half positive (0 is considered a positive number by
common integer convention)

• How will I ever remember those ranges?
– I wish I had an easy way to approximate those large numbers!

Bytes Bits Type Unsigned Range Signed Range

1 8 [unsigned] char 0 to 255 -128 to +127

2 16 [unsigned] short 0 to 65535 -32768 to +32767

4 32 [unsigned] int 0 to 4,294,967,295 -2,147,483,648 to
+2,147,483,648

8 8 [unsigned] long long 0 to 18,446,744,073,709,551,615 -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

4 (8) 32 (64) char* 0 to 18,446,744,073,709,551,615

1.24

Approximating Large Powers of 2

• Often need to find decimal
approximation of a large powers of 2
like 216, 232, etc.

• Use following approximations:
– 210 ≈ 103 (1 thousand) = 1 Kilo-

– 220 ≈ 106 (1 million) = 1 Mega-

– 230 ≈ 109 (1 billion) = 1 Giga-

– 240 ≈ 1012 (1 trillion) = 1 Tera-

• For other powers of 2, decompose
into product of 210 or 220 or 230 and a
power of 2 that is less than 210

– 16-bit word: 64K numbers

– 32-bit dword: 4G numbers

– 64-bit qword: 16 million trillion numbers

216 = 26 * 210

≈ 64 * 103 = 64,000

224 = 24 * 220

≈ 16 * 106 = 16,000,000

228 = 28 * 220

≈ 256 * 106 = 256,000,000

232 = 22 * 230

≈ 4 * 109 = 4,000,000,000

1.25

CONVERTING SIGNED NUMBERS TO
DECIMAL

1.26

Signed numbers

• Systems used to represent
signed numbers split the
possible binary combinations
in half (half for positive
numbers / half for negative
numbers)

• Generally, positive and
negative numbers are
separated using the MSB

– MSB=1 means negative

– MSB=0 means positive

0000
0001

0010

0011

0100

0101

0110

0111

1000

1111

1110

1101

1100

1011

1010

1001

+-

1.27

2’s Complement System

• Normal binary place values except MSB has negative
weight
– MSB of 1 = -2n-1

1248

4-bit

Unsigned

4-bit

2’s complement

0 to 15

Bit

0

Bit

1

Bit

2

Bit

3

124-8

-8 to +7

Bit

0

Bit

1

Bit

2

Bit

3

8-bit

2’s complement
163264-128

-128 to +127

Bit

4

Bit

5

Bit

6

Bit

7

1248

Bit

0

Bit

1

Bit

2

Bit

3

1.28

2’s Complement Examples

4-bit

2’s complement

124-8

= -5

8-bit

2’s complement

1101

124-8

= +31100

163264-128 1248

Notice that +3 in 2’s

comp. is the same as

in the unsigned system

124-8

= -11111

0001 1000 = -127

163264-128 1248

1000 1001 = +25

Important: Positive numbers have the same representation in 2’s complement

as in normal unsigned binary

1.29

2’s Complement Range

• Given n bits…

– Max positive value = 011…11

• Includes all n-1 positive place values

– Max negative value = 100…00

• Includes only the negative MSB place value

Range with n-bits of 2’s complement

[-2n-1 to +2n-1–1]

– Side note – What decimal value is 111…11?

• -110

1.30

Unsigned and Signed Variables

• In C, unsigned variables use unsigned binary (normal
power-of-2 place values) to represent numbers

• In C, signed variables use the 2’s complement system
(Neg. MSB weight) to represent numbers

128 64 32 16 8 4 2 1

1 0 0 1 0 0 1 1 = +147

-128 64 32 16 8 4 2 1

1 0 0 1 0 0 1 1 = -109

1.31

IMPORTANT NOTE

• All computer systems use the 2's complement
system to represent signed integers!

• So from now on, if we say an integer is signed,
we are actually saying it uses the
2's complement system unless otherwise
specified

– Other systems like "signed magnitude" or
"1's complement" exist but will not be used for
integers

1.32

Zero and Sign Extension

2’s complement = Sign Extension (Replicate sign bit):

Unsigned = Zero Extension (Always add leading 0’s):

111011 = 00111011

011010 = 00011010

110011 = 11110011

pos.

neg.

Increase a 6-bit number to 8-bit

number by zero extending

Sign bit is just repeated as

many times as necessary

• Extension is the process of increasing the number of bits used
to represent a number without changing its value

1.33

Zero and Sign Truncation

• Truncation is the process of decreasing the number of bits used
to represent a number without changing its value

2’s complement = Sign Truncation (Remove copies of sign bit):

Unsigned = Zero Truncation (Remove leading 0’s):

00111011 = 111011

00011010 = 011010

11110011 = 10011

pos.

neg.

Decrease an 8-bit number to 6-bit

number by truncating 0’s. Can’t

remove a ‘1’ because value is changed

Any copies of the MSB can be

removed without changing the

numbers value. Be careful not to

change the sign by cutting off

ALL the sign bits.

1.34

SHORTHAND FOR BINARY
Shortcuts for Converting Binary to Hexadecimal

1.35

Binary and Hexadecimal

• Hex is base 16 which is 24

• 1 Hex digit (?)16 can represent: 0-F (0-15)10

• 4 bits of binary (? ? ? ?)2 can represent:
0000-1111= 0-1510

• Conclusion…
1 Hex digit = 4 bits

1.36

Binary to Hex

• Make groups of 4 bits starting from radix
point and working outward

• Add 0’s where necessary

• Convert each group of 4 to an octal digit

101001110.1100 000

= 14E.C16

1 4 E C

1101011.1010 0

= 6B.A16

6 B A

1.37

Hex to Binary

D93.816

110110010011.10002

= 110110010011.12

• Expand each hex digit to a group of 4 bits

14E.C16

101001110.1100 000

= 101001110.112

1.38

Hexadecimal Representation

• Since values in modern computers are many bits, we
use hexadecimal as a shorthand notation (4 bits = 1
hex digit)
– 11010010 = D2 hex or 0xD2 if you write it in C/C++

– 0111011011001011 = 76CB hex or 0x76CB if you write it in
C/C++

1.39

Interpreting Hex Strings

• What does the following hexadecimal represent?

• Just like binary, you must know the underlying representation
system being used before you can interpret a hex value

• Information (value) = Hex + Context (System)
– For now, best be is to convert to binary, then translate

0x41 = ?

65 decimal ‘A’ASCII

inc %ecx
(Add 1 to the ecx register)

Unsigned

Binary system ASCII

systemx86 Assembly

Instruction

1.40

Hexadecimal & Sign

• If a number is represented in 2's complement (e.g.
10010110) then the MSB of its binary
representation would correspond to:
– 0 = Positive

– 1 = Negative

• If that same 2's complement number were viewed
as hex (e.g. 0x96) how could we tell if the
corresponding number is positive or negative?
– MSD of 0-7 = Positive

– MSD of 8-F = Negative

Hex – Binary – Sign
0 = 0000 = Pos.
1 = 0001 = Pos.
2 = 0010 = Pos.
3 = 0011 = Pos.
4 = 0100 = Pos.
5 = 0101 = Pos.
6 = 0110 = Pos.
7 = 0111 = Pos.
8 = 1000 = Neg.
9 = 1001 = Neg.
A = 1010 = Neg.
B = 1011 = Neg.
C = 1100 = Neg.
D = 1101 = Neg.
E = 1110 = Neg.
F = 1111 = Neg.

1.41

APPLICATION: CASTING
Implicit and Explicit

1.42

Implicit and Explicit Casting

• Use your understanding of
unsigned and 2's complement to
predict the output

• Notes:
– unsigned short range: 0 to 65535

– signed short range: -32768 to
+32768

int main()
{

short int v = -10000; /* 0xd8f0 */
unsigned short uv = (unsigned short) v;
printf("v = %d, uv = %u\n", v, uv);
return 0;

}

int main()
{

unsigned u = 4294967295u; /* UMax */
int tu = (int) u;
printf("u = %u, tu = %d\n", u, tu);
return 0;

}

v = -10000, uv = 55536

u = 4294967295, tu = -1

Expected Output:

Expected Output:

0
+1

+2

+3

32766

32767
32768

65535

65534

32770

32769

0
+1

+2

+3

32766

32767
-32768

-1

-2

-32776

-32767

2's Complement Unsigned

1.43

Implicit and Explicit Casting

• Use your understanding of zero
and sign extension to predict the
output

int main()
{

short int v = 0xcfc7; /* -12345 */
unsigned short uv = 0xcfc7; /* 53191 */
int vi = v; /* ??? */
unsigned uvi = uv; /* ??? */
printf("vi = %x, uvi = %x\n", vi, uvi);
return 0;

}

int main()
{

int x = 53191; /* 0xcfc7 */
short sx = x;
int y = sx;
char z = x;

printf("sx = %d, y = %d ", sx, y);
printf("z = %d\n", z);
return 0;

}

vi = ffffcfc7, uvi = cfc7

sx = -12345, y = -12345, z = -57

Expected Output:

Expected Output:

1.44

Advice

• Casting can be done implicitly and explicitly

• Casting from one system to another applies a
new "interpretation" (pair of glasses) on the
same bits

• Casting from one size to another will perform
extension or truncation (based on the system)

