## Unit 1

## Integer Representation

## Skills \& Outcomes

- You should know and be able to apply the following skills with confidence
- Convert an unsigned binary number to and from decimal
- Understand the finite number of combinations that can be made with $n$ bits
- Convert a signed (2's complement system) binary number to and from decimal
- Convert bit sequences to and from hexadecimal
- Predict the outcome \& perform casting operations


## DIGITAL REPRESENTATION

## Information Representation

- All information in a computer system is represented as bits
- Bit $=($ Binary digit $)=0$ or 1
- A single bit is can only represent 2 values so to represent a wider variety of options we use a sequence of bits (e.g. 11001010)
- Commonly sequences are 8-bits (aka a "byte"), 16-, 32- or 64-bits
- Kinds of information
- Numbers, text, code/instructions, sound, images/videos


## Interpreting Binary Strings

- Given a sequence of 1's and 0's, you need to know the representation system being used, before you can understand the value of those 1's and 0's.
- Information (value) $=$ Bits + Context (System)

$$
01000001=?
$$



## Binary Representation Systems

- Integer Systems
- Unsigned
- Unsigned (Normal) binary
- Signed
- Signed Magnitude
- 2's complement
- Excess- $N^{*}$
- 1's complement*
- Floating Point
- For very large and small (fractional) numbers
- Codes
- Text
- ASCII / Unicode
- Decimal Codes
- BCD (Binary Coded Decimal) / (8421 Code)
* $=$ Not covered in this class


## Data Representation

- In C/C++ variables can be of different types and sizes
- Integer Types on 32-bit (64-bit) architectures

| C Type (Signed) | C Type (Unsigned) | Bytes | Bits | x86 Name |
| :---: | :---: | :---: | :---: | :---: |
| char | unsigned char | 1 | 8 | byte |
| short | unsigned short | 2 | 16 | word |
| int / int32_t ${ }^{+}$ | unsigned / uint32_t ${ }^{+}$ | 4 | 32 | double word |
| long | unsigned long | $4(8)$ | $32(64)$ | double (quad) word |
| long long / int64_t ${ }^{+}$ | unsigned long long /uint64_t ${ }^{+}$ | 8 | 64 | quad word |
| char* | - | $4(8)$ | $32(64)$ | double (quad) word |
| int* | - | $4(8)$ | $32(64)$ | double (quad) word |

- Floating Point Types

| C Type | Bytes | Bits | x86 Name |
| :---: | :---: | :---: | :---: |
| float | 4 | 32 | single |
| double | 8 | 64 | double |

School of Engineering

## OVERVIEW

## UNSIGNED BINARY TO DECIMAL

## Number Systems

- Unsigned binary follows the rules of positional number systems
- A positional number systems consist of

1. A base (radix) r
2. $r$ coefficients [0 to $r-1$ ]

- Humans: Decimal (Base 10): 0,1,2,3,4,5,6,7,8,9
- Computers: Binary (Base 2): 0,1
- Human systems for working with computer systems (shorthand for human to read/write binary)
- Octal (Base 8): 0,1,2,3,4,5,6,7
- Hexadecimal (Base 16): 0-9, A, B,C,D,E,F (A thru F=10 thru 15)


## Anatomy of a Decimal Number

- A number consists of a string of explicit coefficients (digits).
- Each coefficient has an implicit place value which is a power of the base.
- The value of a decimal number (a string of decimal coefficients) is the sum of each coefficient times it place value radix (base)
$(934)_{10}=9 * 10^{2}+3 * 10^{1}+4^{*} 10^{0}=934$


Implicit place values
Explicit coefficients
$(3.52)_{10}=3^{*} 10^{0}+5^{*} 10^{-1}+2 * 10^{-2}=3.52$

## Anatomy of an Unsigned Binary Number

- Same as decimal but now the coefficients are 1 and 0 and the place values are the powers of 2



## Binary Examples

$$
\left(\frac{1}{8} \frac{0}{4} \frac{0}{2} \frac{1}{1} \cdot \frac{1}{.5}\right)_{2}=8+1+0.5=9.5_{10}
$$

$$
\left(\frac{101100}{128} \frac{1}{32} \frac{1}{16} 001\right)_{2}=128+32+16+1=177_{10}
$$

## General Conversion From Unsigned Base r to Decimal

- An unsigned number in base $r$ has place values/weights that are the powers of the base
- Denote the coefficients as: $\mathrm{a}_{\mathrm{i}}$
$\left(a_{3} a_{2} a_{1} a_{0} \cdot a_{-1} a_{-2}\right)_{r}=a_{3} * r^{3}+a_{2} * r^{2}+a_{1} * r^{1}+a_{0} * r^{0}+a_{-1} * r^{-1}+a_{-2} * r^{-2}$

Left-most digit = Most Significant<br>Digit (MSD)

Right-most digit =<br>Least Significant<br>Digit (LSD)

$$
\mathbf{N r}_{\mathrm{N}}=>\sum_{i}\left(a_{i}^{*}{ }^{*} \mathbf{i}\right)=>D_{10}
$$

## Examples

$$
\begin{aligned}
(746)_{8} & =7^{*} 8^{2}+4^{*} 8^{1}+6^{*} 8^{0} \\
& =448+32+16=486_{10}
\end{aligned}
$$

$$
(1 \mathrm{~A} 5)_{16}=1^{*} 16^{2}+10^{*} 16^{1}+5^{*} 16^{0}
$$

$$
=256+160+5=421_{10}
$$

$(A D 2)_{16}=10^{*} 16^{2}+13^{*} 16^{1}+2 * 16^{0}$

$$
=2560+208+2=(2770)_{10}
$$

"Making change"

## UNSIGNED DECIMAL TO BINARY

## Decimal to Unsigned Binary

- To convert a decimal number, $x$, to binary:
- Only coefficients of 1 or 0 . So simply find place values that add up to the desired values, starting with larger place values and proceeding to smaller values and place a 1 in those place values and 0 in all others


For $25_{10}$ the place value 32 is too large to include so we include
16. Including 16 means we have to make 9 left over. Include 8 and 1.

## Decimal to Unsigned Binary

$$
\begin{aligned}
& 73_{10}=\quad \frac{0}{128} \frac{1}{64} \frac{0}{32} \frac{0}{16} \frac{1}{8} \quad \frac{0}{4} \quad \frac{0}{2} \quad \frac{1}{1} \\
& 87_{10}=\quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \\
& 145_{10}=1 \underline{1} \quad \underline{0} \quad 1 \quad \underline{0} \quad \underline{0} \quad 1 \\
& 0.625_{10}=\quad \frac{1}{.5} \frac{0}{.25} \frac{1}{.125} \frac{0}{.0625} \underset{.03125}{0}
\end{aligned}
$$

## Decimal to Another Base

- To convert a decimal number, $x$, to base $r$ :
- Use the place values of base $r$ (powers of $r$ ). Starting with largest place values, fill in coefficients that sum up to desired decimal value without going over.



## UNIQUE COMBINATIONS

## Powers of 2

$$
\begin{gathered}
2^{0}=1 \\
2^{1}=2 \\
2^{2}=4 \\
2^{3}=8 \\
2^{4}=16 \\
2^{5}=32 \\
2^{6}=64 \\
2^{7}=128 \\
2^{8}=256 \\
2^{9}=512 \\
2^{10}=1024
\end{gathered}
$$

## Unique Combinations

- Given $n$ digits of base $r$, how many unique numbers can be formed? ${ }^{n}$
- What is the range? [0 to $r^{n}-1$ ]

2-digit, decimal numbers ( $r=10, n=2$ )

|  |  |  |
| :--- | :--- | :--- |
| $0-9$ | 100 combinations: <br> $00-99$ |  |

3-digit, decimal numbers ( $r=10, n=3$ )
4-bit, binary numbers ( $\mathrm{r}=2, \mathrm{n}=4$ )


Main Point: Given $n$ digits of base $r, r^{n}$ unique numbers can be made with the range [0-( $\left.r^{n}-1\right)$ ]

## Range of C Data Types

- For a given integer data type we can find its range by raising 2 to the $n, 2^{n}$ (where $n=$ number of bits of the type)
- For signed representations we break the range in half with half negative and half positive ( 0 is considered a positive number by common integer convention)

| Bytes | Bits | Type | Unsigned Range | Signed Range |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 8 | [unsigned] char | 0 to 255 | -128 to +127 |
| 2 | 16 | [unsigned] short | 0 to 65535 | -32768 to +32767 |
| 4 | 32 | [unsigned] int | 0 to $4,294,967,295$ | $-2,147,483,648$ to <br> $+2,147,483,648$ |
| 8 | 8 | [unsigned] long long | 0 to $18,446,744,073,709,551,615$ | $-9,223,372,036,854,775,808$ to <br> $+9,223,372,036,854,775,807$ |
| $4(8)$ | $32(64)$ | char* | 0 to $18,446,744,073,709,551,615$ |  |

- How will I ever remember those ranges?
- I wish I had an easy way to approximate those large numbers!


## Approximating Large Powers of 2

- Often need to find decimal approximation of a large powers of 2 like $2^{16}, 2^{32}$, etc.

$$
\begin{aligned}
2^{16} & =2^{6} * 2^{10} \\
& \approx 64 * 10^{3}=64,000
\end{aligned}
$$

- Use following approximations:
$-2^{10} \approx 10^{3}$ (1 thousand) $=1$ Kilo-
$-2^{20} \approx 10^{6}(1$ million $)=1$ Mega-
$-2^{30} \approx 10^{9}(1$ billion $)=1$ Giga-
$-2^{40} \approx 10^{12}(1$ trillion $)=1$ Tera-

$$
\begin{aligned}
2^{24} & =2^{4} * 2^{20} \\
& \approx 16 * 10^{6}=16,000,000 \\
2^{28} & =2^{8} * 2^{20} \\
& \approx 256 * 10^{6}=256,000,000
\end{aligned}
$$

- For other powers of 2, decompose into product of $2^{10}$ or $2^{20}$ or $2^{30}$ and a power of 2 that is less than $2^{10}$

$$
\begin{aligned}
2^{32} & =2^{2} * 2^{30} \\
& \approx 4 * 10^{9}=4,000,000,000
\end{aligned}
$$

- 16-bit word: 64 K numbers
- 32-bit dword: 4G numbers
- 64-bit qword: 16 million trillion numbers


## CONVERTING SIGNED NUMBERS TO DECIMAL

## Signed numbers

- Systems used to represent signed numbers split the possible binary combinations in half (half for positive numbers / half for negative numbers)
- Generally, positive and negative numbers are separated using the MSB
- MSB=1 means negative

- MSB=0 means positive


## 2's Complement System

- Normal binary place values except MSB has negative weight
- MSB of $1=-2^{n-1}$

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 4-bit | Bit <br> 3 | Bit <br> 2 | Bit <br> 1 | Bit <br> 0 |
|  |  |  |  |  |
| 2 |  |  |  |  |

4-bit

| Bit <br> 3 | Bit <br> 2 | Bit <br> 1 | Bit <br> 0 |
| :---: | :---: | :---: | :---: |
| -8 |  | 2 | 1 |



2's complement

$$
\overline{-8} \overline{4} \overline{2} \overline{1}
$$

8-bit



## 2's Complement Examples

School of Engineering
O

## \section*{e} <br> 2's Complement Range

- Given n bits...
- Max positive value $=011$... 11
- Includes all n-1 positive place values
- Max negative value $=100 . . .00$
- Includes only the negative MSB place value Range with n -bits of 2's complement

$$
\left[-2^{n-1} \text { to }+2^{n-1}-1\right]
$$

- Side note - What decimal value is $111 . . .11$ ?
- $-1_{10}$


## Unsigned and Signed Variables

- In C, unsigned variables use unsigned binary (normal power-of-2 place values) to represent numbers

$$
\frac{1}{128} \frac{0}{64} \frac{0}{32} \frac{1}{16} \frac{0}{8} \frac{0}{4} \frac{1}{2} \frac{1}{1}=+147
$$

- In C, signed variables use the 2's complement system (Neg. MSB weight) to represent numbers

$$
\frac{1}{-128} \frac{0}{64} \frac{0}{32} \frac{1}{16} \frac{0}{8} \frac{0}{4} \frac{1}{2} \frac{1}{1}=-109
$$

## IMPORTANT NOTE

- All computer systems use the 2 's complement system to represent signed integers!
- So from now on, if we say an integer is signed, we are actually saying it uses the
2 's complement system unless otherwise specified
- Other systems like "signed magnitude" or "1's complement" exist but will not be used for integers


## Zero and Sign Extension

- Extension is the process of increasing the number of bits used to represent a number without changing its value

Unsigned $=$ Zero Extension (Always add leading 0's):


2's complement $=$ Sign Extension $($ Replicate sign bit $):$

$$
\begin{array}{ll}
\text { pos. } & 011010=\hat{00011010} \quad \begin{array}{c}
\text { Sign bit is just repeated as } \\
\text { many times as necessary }
\end{array} \\
\text { neg. } & 110011=\hat{11110011} \quad
\end{array}
$$

## Zero and Sign Truncation

- Truncation is the process of decreasing the number of bits used to represent a number without changing its value

Unsigned $=$ Zero Truncation (Remove leading 0's):

Decrease an 8-bit number to 6-bit

$$
\text { O区111011 = } 111011
$$

2's complement = Sign Truncation (Remove copies of sign bit):

$$
\begin{aligned}
& \text { pos. } \mathcal{Z} 0011010=011010 \\
& \text { neg. } Z \neq 110011=10011
\end{aligned}
$$

Any copies of the MSB can be removed without changing the numbers value. Be careful not to change the sign by cutting off ALL the sign bits.

## SHORTHAND FOR BINARY

## Binary and Hexadecimal

- Hex is base 16 which is $2^{4}$
- 1 Hex digit (? $)_{16}$ can represent: 0-F (0-15) 10
- 4 bits of binary (? ? ? ? $)_{2}$ can represent:
$0000-1111=0-15_{10}$
- Conclusion...

1 Hex digit = 4 bits

## Binary to Hex

- Make groups of 4 bits starting from radix point and working outward
- Add 0's where necessary
- Convert each group of 4 to an octal digit

$=14 \mathrm{E} . \mathrm{C}_{16}$

$=6 \mathrm{~B} \cdot \mathrm{~A}_{16}$


## Hex to Binary

- Expand each hex digit to a group of 4 bits

$$
\begin{array}{rr}
\overbrace{000101001110.1100}^{14 E . C_{16}} & \overbrace{110110010011} \cdot \overbrace{1000_{2}}^{\text {D93.8 }} \overbrace{16} \\
=101001110.11_{2} & =110110010011 \cdot 1_{2}
\end{array}
$$

## Hexadecimal Representation

- Since values in modern computers are many bits, we use hexadecimal as a shorthand notation (4 bits = 1 hex digit)
$-11010010=$ D2 hex or 0xD2 if you write it in C/C++
$-0111011011001011=76$ CB hex or 0x76CB if you write it in C/C++


## Interpreting Hex Strings

- What does the following hexadecimal represent?
- Just like binary, you must know the underlying representation system being used before you can interpret a hex value
- Information (value) = Hex + Context (System)
- For now, best be is to convert to binary, then translate

$$
0 \times 41=?
$$



## Hexadecimal \& Sign

- If a number is represented in 2 's complement (e.g. 10010110) then the MSB of its binary representation would correspond to:
$-0=$ Positive
- 1 = Negative
- If that same 2's complement number were viewed as hex (e.g. 0x96) how could we tell if the corresponding number is positive or negative?
- MSD of 0-7 = Positive
- MSD of 8-F = Negative

$$
\begin{aligned}
& \text { Hex }- \text { Binary }- \text { Sign } \\
& 0=0000=\text { Pos. } \\
& 1=0001=\text { Pos. } \\
& 2=0010=\text { Pos. } \\
& 3=0011=\text { Pos. } \\
& 4=0100=\text { Pos. } \\
& 5=0101=\text { Pos. } \\
& 6=0110=\text { Pos. } \\
& 7=0111=\text { Pos. } \\
& 8=1000=\text { Neg. } \\
& 9=1001=\text { Neg. } \\
& A=1010=\text { Neg. } \\
& B=1011=\text { Neg. } \\
& C=1100=\text { Neg. } \\
& D=1101=\text { Neg. } \\
& E=1110=\text { Neg. } \\
& F=1111=\text { Neg. }
\end{aligned}
$$

Implicit and Explicit
APPLICATION: CASTING

## Implicit and Explicit Casting

- Use your understanding of unsigned and 2's complement to predict the output
- Notes:
- unsigned short range: 0 to 65535
- signed short range: -32768 to +32768



## Implicit and Explicit Casting

- Use your understanding of zero and sign extension to predict the output

```
int main()
{
    short int v = 0xcfc7; /* -12345 */
    unsigned short uv = 0xcfc7; /* 53191 */
    int vi = v; /* ??? */
    unsigned uvi = uv; /* ??? */
    printf("vi = %x, uvi = %x\n", vi, uvi);
    return 0;
}
```


## Expected Output:

```
vi = ffffcfc7, uvi = cfc7
```

```
int main()
{
    int x = 53191; /* 0xcfc7 */
    short sx = x;
    int y = sx;
    char z = x;
    printf("sx = %d, y = %d ", sx, y);
    printf("z = %d\n", z);
    return 0;
}
```


## Expected Output:

```
sx = -12345, y = -12345, z = -57
```


## Advice

- Casting can be done implicitly and explicitly
- Casting from one system to another applies a new "interpretation" (pair of glasses) on the same bits
- Casting from one size to another will perform extension or truncation (based on the system)

