Final Jeopardy

Binary Brainteasers	Instruction Inquiry	Random Riddles	Memory Madness	Processor Predicaments	Programming Pickles
$\underline{100}$	$\underline{100}$	$\underline{100}$	$\underline{100}$	$\underline{100}$	$\underline{100}$
$\underline{200}$	$\underline{200}$	$\underline{200}$	$\underline{200}$	$\underline{200}$	$\underline{200}$
$\underline{300}$	$\underline{300}$	$\underline{300}$	$\underline{300}$	$\underline{300}$	$\underline{300}$
$\underline{400}$	$\underline{400}$	$\underline{400}$	$\underline{400}$	$\underline{400}$	$\underline{400}$
$\underline{500}$	$\underline{500}$	$\underline{500}$	$\underline{500}$	$\underline{500}$	$\underline{500}$

Binary Brainteaser 100

- Given the binary string "10001101", what would its decimal equivalent be assuming a 2's complement representation?

Binary Brainteaser 200

- Assuming the 12-bit IEEE shortened FP format, what is the decimal equivalent of the following number?

Binary Brainteaser 300

- Under what conditions does overflow occur in signed arithmetic (addition/subtraction)?

Binary Brainteaser 400

- The following operation is equivalent to what arithmetic relationship?
$-(x \ll 3+x \ll 1)+\sim y+1 ;$

Binary Brainteaser 500

- Given the following normalized FP number, what would the result be after using the round-to-nearest method?

$$
+1.011011100 * 2^{5}
$$

Instruction Inquiry 100

- Initial conditions:
- \%ebx = 0xf0000001
- \%rdi = 0x10010040
- M[0x10010044] = 0xabcdef98
$-M[0 \times 10010040]=0 \times 12345678$
$-M[0 \times 1001003 c]=0 \times 11122233$
- What is the result of the following instruction?
- movb 5(\%rdi), \%bl

Instruction Inquiry 200

Instruction Inquiry 300

- Initial conditions:
- \%ebx = 0xf000000f
- What is the result of the following instruction?
- xorl \%ebx,\%ebx
$-M[0 x 10010044]=0 x a b c d e f 34$
$-M[0 \times 10010040]=0 \times 12345678$
$-M[0 \times 1001003 c]=0 \times 11122288$
- What is the result of the following instruction?
- movsbw (\%rdi,\%rbx,4),\%eax
- \%rbx = 0xffff_ffff_ffff_ffff
$-\% r d i=0 x 10010040$
- \%eax = 0x12345678

Instruction Inquiry 400

- Initial conditions:
- \%eax = 0x80010000
- What is the result of the following instruction?
- sarl 1,\%eax

Instruction Inquiry 500

- Initial conditions:
- \%rbx = 0x00000001
- \%rdi = 0x1001003c
- M[0x10010044] = 0xabcdef98
$-M[0 \times 10010040]=0 \times 12345678$
$-M[0 \times 1001003 c]=0 \times 11122233$
- What is the result of the following instruction?
- leal 6(\%rdi,\%rbx,2), \%eax

Random Riddles 100

- True/False: The symbol table in an object file has entries for local variables, non-static global variables, and non-static functions?

Random Riddles 200

- What advantage(s) do shared (dynamically linked) libraries have compared to statically linked libraries?

Random Riddles 300

- Name at least three possible placement algorithms that may be used by a memory allocator?

Random Riddles 400

- What is placed in the .bss section and why is the .bss section used in an object file or executable?

Random Riddles 500

Memory Madness 100

- True/False: SDRAM will read/write one word at a time to/from the processor
When seeking to improve the performance of a program, focus should be given to the \qquad case which can be found through the help of a software tool called a \qquad . ation

USCViterbi

Memory Madness 200

- In a 4-way set associative cache with 512 total blocks, how many bits will be used to index the set (i.e. the set field of the address breakdown)?

Memory Madness 300

- A 1-way set associative cache could equivalently be called what?

Memory Madness 400

- The page table is located in the (TLB / memory) and has entries for (all pages residing in physical memory / all pages)?

Memory Madness 500

- Assume a 24 -bit virtual addresses, 1 KB pages and a fully-associative TLB with 128 entries. Assume page table and TLB entries are 2bytes. How large would the page table be?

Processor Predicaments 100

- A superscalar processor means that the maximum IPC (instructions per clock cycle) is greater than \qquad ?

Processor Predicaments 200

- A control hazard occurs when we execute what kind of instruction(s)?

Processor Predicaments 300

- Of the three kinds of data hazards (RAW, WAR, WAW) which is the only true dependency?

Processor Predicaments 400

- WAR and WAW hazards prevent us from (reordering instructions / predicting a branch) and can be solved through \qquad ?

USCViterbi ${ }^{11}$

Processor Predicaments 500

- Statically schedule superscalars rely on __ to schedule the code to avoid hazards while dynamically scheduled superscalars rely on \qquad to schedule the code.

Programming Pickles 100

- A programming technique to expose more parallelism in a loop body to the compiler is known as: \qquad

Programming Pickles 200

- Calling a subroutine will result in the return address being stored (in the PC / on the stack)?

Programming Pickles 300

- The stack frame of a subroutine includes space for three sections of data, what are they?
- The compiler optimization of reproducing the function code at each location where it is called is known as \qquad .

Cache Operation Example

- Address Trace
- R: 0x3c0
- W: 0x048
- R: 0x3d4
- W: 0xb50
- Operations
- Hit
- Fetch block XX
- Evict block XX (w/ or w/o WB)
- Final WB of block XX)
- Perform address breakdown and apply address trace
- 2-Way Set-Assoc, N=8, B=32 bytes

Processor Access	Cache Operation
R: 0×3 c0	
W: 0×048	
R: $0 \times 3 \mathrm{~d} 4$	
W: 0×650	
Done!	

2-way VLIW Scheduling

- No forwarding w/in an issue packet (between instructions in a packet)
- Full forwarding paths for instructions already in the pipeline even across slots/pipes (i.e. from 'add' in MEM stage to 'Iw' in EX stage)
- Latency of LW is still 1 stall cycle for dependent instructions
- Assume early branch detection (in DECODE stage)

Sample Scheduling

- Schedule the following loop body on our 2-way static issue machine
- You can modify code and re-arrange but not unroll loops or rename registers

for (i=MAX-1; i ! $=0$; $\mathbf{i}--, A++, B++)$

\%rdi = pointer to A
\%rsi = pointer to B
\%edx = i = \# of iterations
L1: ld (\%rdi),\%eax
ld (\%rsi),\%ebx
addl \%ebx, \%eax
st \%eax, (\%rdi)
addl $\$ 4$,\%rdi
addl $\$ 4, \%$ rsi
addl \$-1,\%ed
jne $\$ 0, \%$ edx, $\mathrm{L1}$

Int./Branch Slot	LD/ST Slot

Sample Scheduling

- Now unroll the loop two ways and use register renaming and schedule the code (feel free to modify aspects of the code as needed to ensure better scheduling).

