CS356 Unit 15

Review

Final Jeopardy

Binary Brainteasers	Instruction Inquiry	Random Riddles	Memory Madness	Processor Predicaments	Programming Pickles
$\underline{100}$	$\underline{100}$	$\underline{100}$	$\underline{100}$	$\underline{100}$	$\underline{100}$
$\underline{200}$	$\underline{200}$	$\underline{200}$	$\underline{200}$	$\underline{200}$	$\underline{200}$
$\underline{300}$	$\underline{300}$	$\underline{300}$	$\underline{300}$	$\underline{300}$	$\underline{300}$
$\underline{400}$	$\underline{400}$	$\underline{400}$	$\underline{400}$	$\underline{400}$	$\underline{400}$
$\underline{500}$	$\underline{500}$	$\underline{500}$	$\underline{500}$	$\underline{500}$	$\underline{500}$

Binary Brainteaser 100

- Given the binary string "10001101", what would its decimal equivalent be assuming a 2's complement representation?
- ANSWER: $-128+8+4+1=-115$

Binary Brainteaser 200

- Assuming the 12-bit IEEE shortened FP format, what is the decimal equivalent of the following number?

1	10010	100010

- ANSWER: $-1.100010 * 2^{3}=-1100.010=$ -12.25

Binary Brainteaser 300

- Under what conditions does overflow occur in signed arithmetic (addition/subtraction)?
- ANSWER: when $\mathrm{p}+\mathrm{p}=\mathrm{n}$ or $\mathrm{n}+\mathrm{n}=\mathrm{p}$

Binary Brainteaser 400

- The following operation is equivalent to what arithmetic relationship?

$$
-(x \ll 3+x \ll 1)+\sim y+1 ;
$$

- Answer: $8 x+2 x-y=10 x-y$

Binary Brainteaser 500

- Given the following normalized FP number, what would the result be after using the round-to-nearest method?

$$
+1.011011100 * 2^{5}
$$

- ANSWER: Round to 0 in the LSB, so round up to $+1.011100 * 2^{5}$

Instruction Inquiry 100

- Initial conditions:
$-\% e b x=0 x f 0000001$
$-\% r d i=0 x 10010040$
- M[0x10010044] = 0xabcdef98
$-M[0 \times 10010040]=0 \times 12345678$
$-M[0 x 1001003 c]=0 x 11122233$
- What is the result of the following instruction?
- movb 5(\%rdi), \%bl
- ANSWER: 0xf00000ef

Instruction Inquiry 200

- Initial conditions:
- \%rbx = 0xfffff_ffff_ffff_ffff
$-\% r d i=0 \times 10010040$
- \%eax = 0x12345678
$-M[0 \times 10010044]=0 \times a b c d e f 34$
$-M[0 \times 10010040]=0 \times 12345678$
$-M[0 x 1001003 c]=0 x 11122288$
- What is the result of the following instruction?
- movsbw (\%rdi,\%rbx,4),\%ax
- ANSWER: 0x1234ff88

Instruction Inquiry 300

- Initial conditions:
$-\% e b x=0 x f 000000 f$
- What is the result of the following instruction?
- xorl \%ebx,\%ebx
- ANSWER: 0x00000000

Instruction Inquiry 400

- Initial conditions:
$-\% e a x=0 \times 80010000$
- What is the result of the following instruction?
- sarl 1,\%eax
- ANSWER: 0xc0008000

Instruction Inquiry 500

- Initial conditions:
$-\% r b x=0 x 00000001$
$-\% r d i=0 x 1001003 c$
- M[0x10010044] = 0xabcdef98
$-M[0 \times 10010040]=0 \times 12345678$
$-M[0 x 1001003 c]=0 x 11122233$
- What is the result of the following instruction?
- leal 6(\%rdi,\%rbx,2), \%eax
- ANSWER: 0x10010044

Random Riddles 100

- True/False: The symbol table in an object file has entries for local variables, non-static global variables, and non-static functions?
- ANSWER: False (local variables are not tracked...the other 2 are)

Random Riddles 200

- What advantage(s) do shared (dynamically linked) libraries have compared to statically linked libraries?
- Answer:
- Does not waste memory with multiple copies of the code
- Allows for updated library code to be used without recompilation

Random Riddles 300

- Name at least three possible placement algorithms that may be used by a memory allocator?
- Answer:
- Best fit
- First Fit
- Next Fit
- optional: Buddy System

Random Riddles 400

- What is placed in the .bss section and why is the .bss section used in an object file or executable?
- Answer:
- Uninitialized global variables or 0-initialized globals
- Saves space in the executable/object file

Random Riddles 500

- When seeking to improve the performance of a program, focus should be given to the case which can be found through the help of a software tool called a \qquad .
- Answer:
- common
- profiler

Memory Madness 100

- True/False: SDRAM will read/write one word at a time to/from the processor
- ANSWER: False...Read/write bursts of words

Memory Madness 200

- In a 4-way set associative cache with 512 total blocks, how many bits will be used to index the set (i.e. the set field of the address breakdown)?
- ANSWER: $512 / 4=128$ sets $=>7$-bits

Memory Madness 300

- A 1-way set associative cache could equivalently be called what?
- ANSWER: 1-way means only 1 option for each set which is equivalent to a direct mapped cache

Memory Madness 400

- The page table is located in the (TLB / memory) and has entries for
(all pages residing in physical memory / all pages)?
- Answer:
- memory
- all pages

Memory Madness 500

- Assume a 24-bit virtual addresses, 1 KB pages and a fully-associative TLB with 128 entries. Assume page table and TLB entries are 2bytes. How large would the page table be?
- ANSWER: 1 KB pages => 10-bits for page offset leaving 14-bits for virtual page number. This implies $2^{14}=16 \mathrm{~K}$ pages and thus entries in page table. At 2-bytes each, this would require 32 KB of memory.

Processor Predicaments 100

- A superscalar processor means that the maximum IPC (instructions per clock cycle) is greater than \qquad
- ANSWER: > 1 instruction per clock cycle

Processor Predicaments 200

- A control hazard occurs when we execute what kind of instruction(s)?
- ANSWER: jumps, calls

Processor Predicaments 300

- Of the three kinds of data hazards (RAW, WAR, WAW) which is the only true dependency?
- RAW

Processor Predicaments 400

- WAR and WAW hazards prevent us from (reordering instructions / predicting a branch) and can be solved through \qquad ?
- Answer:
- reordering instructions
- register renaming

Processor Predicaments 500

- Statically schedule superscalars rely on to schedule the code to
avoid hazards while dynamically scheduled superscalars rely on to schedule the code.
- ANSWERS: Compiler, HW

Programming Pickles 100

- A programming technique to expose more parallelism in a loop body to the compiler is known as:
- ANSWER: Loop unrolling

Programming Pickles 200

- Calling a subroutine will result in the return address being stored (in the PC / on the stack)?
- Answer: on the stack

Programming Pickles 300

- The stack frame of a subroutine includes space for three sections of data, what are they?
- ANSWER:
- Local variables
- Saved registers
- Arguments for subroutines

Programming Pickles 400

- The compiler optimization of reproducing the function code at each location where it is called is known as \qquad
- ANSWER: Inlining

Programming Pickles 500

- A special value placed on the stack between local variables and return address is known as a
- ANSWER: stack canary

Cache Operation Example

- Address Trace
- R: 0x3c0
- W: 0x048
- R: 0x3d4
- W: 0xb50
- Operations
- Hit
- Fetch block XX
- Evict block XX (w/ or w/o WB)
- Final WB of block XX)
- Perform address breakdown and apply address trace
- 2-Way Set-Assoc, N=8, B=32 bytes

Address	Tag	Set	Byte Offset
$0 \times 3 \mathrm{c} 0$	00111	10	00000
0×048	00000	10	01000
$0 \times 3 d 4$	00111	10	10100
0×650	10110	10	10000

Processor Access	Cache Operation
R: $0 \times 3 \mathrm{c} 0$	Fetch Block 3c0-3df
W: 0×048	Fetch Block 040-05f
R: $0 \times 3 \mathrm{~d} 4$	Hit
W: 0×650	Evict $040-05 f \mathrm{w} / \mathrm{WB}$ Fetch b40-b5f
Done!	Final WB of b40-b5f

2-way VLIW Scheduling

- No forwarding w/in an issue packet (between instructions in a packet)
- Full forwarding paths for instructions already in the pipeline even across slots/pipes (i.e. from 'add' in MEM stage to 'lw' in EX stage)
- Latency of LW is still 1 stall cycle for dependent instructions
- Assume early branch detection (in DECODE stage)

Sample Scheduling

- Schedule the following loop body on our 2-way static issue machine
- You can modify code and re-arrange but not unroll loops or rename registers

```
for(i=MAX-1; i != 0; i--,A++,B++)
    *A = *A + *B;
```

```
%rdi = pointer to A
%rsi = pointer to B
%edx = i = # of iterations
```

L1: ld (\%rdi),\%eax
ld (\%rsi),\%ebx
addl \%ebx,\%eax
st \%eax,(\%rdi)
addl \$4,\%rdi
addl \$4,\%rsi
addl \$-1,\%edx
jne $\$ 0, \% e d x, L 1$

Int./Branch Slot		LD/ST Slot
addl \$-1,\%edx	ld	(\%rdi),\%eax
addl \$4,\%rdi	ld	(\%rsi) ,\%ebx
addl \$4,\%rsi		
addl \%ebx,\%eax		
jne \$0,\%edx, L1	st \%eax, -4(\%rdi)	

Sample Scheduling

- Now unroll the loop two ways and use register renaming and schedule the code (feel free to modify aspects of the code as needed to ensure better scheduling).

```
%rdi = pointer to A
%rsi = pointer to B
%edx = i = # of iterations
L1: ld (%rdi),%eax
    ld (%rsi),%ebx
    addl %ebx,%eax
    st %eax,(%rdi)
    ld 4(%rdi),%r8d
    ld 4(%rsi),%r9d
    addl %r9d,%r8d
    st %r8d,4(%rdi)
    addl $8,%rdi
    addl $8,%rsi
    addl $-2,%edx
    jne $0,%edx,L1
```

Int./Branch Slot		LD/ST Slot
addl \$-2,\%edx	ld	(\%rdi),\%eax
addl \$8,\%rdi	ld	(\%rsi),\%ebx
addl \$8,\%rsi	ld	-4(\%rdi),\%r8d
addl \%ebx,\%eax	ld	-4(\%rsi),\%r9d
	st	\%eax, -8(\%rdi)
addl \%r9d,\%r8d		
jne \$0,\%edx, L1	st	\%r8d,-4(\%rdi)

