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CS356 Unit 14 

Coherency

14.2

Multicores

• Rather than overlapping and parallelizing instructions from 

one thread on one core, another approach is to just have 

multiple processor cores

– Each core executes separate threads

– Threads may be from ______________ and working on ________ data

– When sharing data, caching issues arise!

– Let's explore these issues

14.3

Communication Paradigms

• Shared Memory (common for multicores)

– Each processor shares the same memory via a 

shared __________________

– Communication is ________________ (implicitly) 

handled by the HW.  

SW program just has to perform normal loads and 

stores to shared memory locations (i.e. ________ 

variables, or pointers to the same variable)

– Coherence of data becomes an issue

• Message Passing 

– Each processor has its own memory/address 

space

– Communication must be explicitly defined by the 

SW program/processor (either by DMA or some 

other mechanism)
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Cache Coherency

• Problem:  Multiple cached copies of same memory block may 

lead to ________________ problems (think 'git' merge conflicts)

– Each processor can get their own copy, ________ it, and perform 

calculations on their own ______________ values…INCOHERENT!

• Solution: Snoopy/snooping caches…
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Snoopy or Snoopy

14.6

Solving Cache Coherency
• If no writes, multiple copies are fine

• Two options:  When a block is modified

– Go out and _____________________ else’s copy

– _______________ all other sharers and make them come back to you to get a fresh copy

• _________________ caches using invalidation policy is most common

– Caches ________________________ on the bus looking for invalidation messages

– If another cache needs a block you have the latest version of, forward it to mem & others
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Coherence Definition

• A memory system is coherent if the value returned on a Load 

instruction is always the value given by the 

_________________ instruction by any processor to the 

same address 

• To implement this ability we need a protocol (set of rules) to 

track the "state" of each cache block

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.
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Write Back Cache Coherency Protocols

• Write invalidate protocols (“Ownership Protocols”)

• Basic 3-state (MSI) Protocol

– I = ___________: Not in cache or invalidated earlier

– RO (Read-Only) = __________: Processors has a valid block but so 

might other caches.  Thus it is only safe to read their copy (but not 

write to it)  

– RW (Read-Write) = ___________: Processors has modified (written) 

to the block and it is guaranteed to have the only copy (no other 

caches have a copy).  Thus it is only safe to read or write.

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.



14.9

Write Invalidate Snoopy Protocol

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.
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Remote Read
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Local Write
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Remote Read
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Coherency Example
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Another Coherency Example
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Coherence Implementation
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Is Cache Coherency = Atomicity?

• Does coherency take the place of locking/synchronization?

• ___, cache coherence only serializes _______ and does not 

serialize entire ______________________ sequences

– Coherence simply ensures two processors don’t read two different 

values of the same memory location

• Consider two threads performing:  sum += thread_val
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False Sharing

• Thread-independent (i.e. non-

shared) variables allocated on the 

same ____________

• Can cause a large performance 

_______________ due to cache 

coherence (invalidates, etc.)

int x = 0;

int y = 0;

void t1() { 

for(int x=N; x > 0; x--)

{ }

y = 1;

...

}

void t2() { 

while( y == 0);

{ }

printf(“Y was set to 1\n”);

}
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int x = 0;

int y __attribute__ ((aligned (64))) = 0;

…

False Sharing Example

One solution: Alignment
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Locks and Contention

• The more threads compete for a lock, the slower performance 

will be

– Continuous sequence of invalidate, get exclusive access to check lock, 

see it is already taken, repeat

• Options

– Use special locks (e.g. queuing locks where a thread takes a number 

and waits until it is called rather than continuously checking if the lock 

is free)

– Lock Granularity:  Use separate locks for each element in a data 

structure rather than the one lock for the whole structure

– Others that you will explore in CS350

14.19

DMA ENGINES

14.20

Direct Memory Access (DMA)

• Large buffers of data often 

need to be copied between:

– Memory and I/O (video data, 

network traffic, etc.)

– Memory and Memory (OS space 

to user app. space)

• DMA devices are small 

hardware devices that copy 

data from a source to 

destination freeing the 

processor to do “real” work
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Data Transfer w/o DMA

• Without DMA, processor would 

have to move data using a loop

• Move 16Kwords pointed to by 

(%esi) to (%edi)
movl $16384,%ecx

AGAIN: movl (%esi),%eax

movl %eax,(%edi)

add   $4,%esi

add   $4,%edi 

sub   $1,%ecx

jnz AGAIN

• Processor wastes valuable execution 

time moving data
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Data Transfer w/ DMA

• Processor sets values in DMA control 
registers

– Source Start Address

– Dest. Start Address

– Byte Count

– Control & Status (Start, Stop, Interrupt 
on Completion, etc.)

• DMA becomes “bus-master” 
(controls system bus to generate 
reads and writes) while processor is 
free to execute other code

– Small problem: Bus will be busy

– Hopefully, data & code needed by the 
CPU will reside in the processor’s cache
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DMA Engines

• Systems usually have multiple DMA engines/channels

• Each can be configured to be started/controlled by the 

processor or by certain I/O peripherals 

– Network or other peripherals can initiate DMA’s on their behalf

• Bus arbiter assigns control of the bus

– Usually winning requestor 

has control of the bus until it 

relinquishes it 

(turns off its request signal)
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