
14.1

CS356 Unit 14 

Coherency

14.2

Multicores

• Rather than overlapping and parallelizing instructions from 

one thread on one core, another approach is to just have 

multiple processor cores

– Each core executes separate threads

– Threads may be from ______________ and working on ________ data

– When sharing data, caching issues arise!

– Let's explore these issues

14.3

Communication Paradigms

• Shared Memory (common for multicores)

– Each processor shares the same memory via a 

shared __________________

– Communication is ________________ (implicitly) 

handled by the HW.  

SW program just has to perform normal loads and 

stores to shared memory locations (i.e. ________ 

variables, or pointers to the same variable)

– Coherence of data becomes an issue

• Message Passing 

– Each processor has its own memory/address 

space

– Communication must be explicitly defined by the 

SW program/processor (either by DMA or some 

other mechanism)

P1

Shared Memory

P2

W X

0xfffffffc

0x0

0x401ac8

Write X 

to 

0x401ac8

Read X 

from 

0x401ac8

P1

Message Passing

P2
0x0

Transfer  

2 words 

from 

0x401ac8 

to 

0x081fec

Read  

from 

0x081fec

0x0

0x401ac8

0x081fec

14.4

Cache Coherency

• Problem:  Multiple cached copies of same memory block may 

lead to ________________ problems (think 'git' merge conflicts)

– Each processor can get their own copy, ________ it, and perform 

calculations on their own ______________ values…INCOHERENT!

• Solution: Snoopy/snooping caches…

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3 4aP1 Reads X

Block X

P2 Reads X P1 Writes X

if P2 Reads X it 

will be using a 

“stale” value of X 4b

if P2 Writes X we 

now have two 

versions. How do we 

reconcile them?

Example of incoherence



14.5

Snoopy or Snoopy

14.6

Solving Cache Coherency
• If no writes, multiple copies are fine

• Two options:  When a block is modified

– Go out and _____________________ else’s copy

– _______________ all other sharers and make them come back to you to get a fresh copy

• _________________ caches using invalidation policy is most common

– Caches ________________________ on the bus looking for invalidation messages

– If another cache needs a block you have the latest version of, forward it to mem & others

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3P1 & P2 Reads X

P1 wants to writes X, 

so it first sends 

“invalidation” over 

the bus for all sharers

Now P1 can safely 

write X 4

if P2 attempts to 

read/write x, it will 

miss, & request the 

block over the bus

Coherency using “snooping” & invalidation

Invalidate 

block X if 

you have 

it

Block X

5

P1

$

P2

$

M

P1 forwards data to 

to P2 and memory 

at same time

14.7

Coherence Definition

• A memory system is coherent if the value returned on a Load 

instruction is always the value given by the 

_________________ instruction by any processor to the 

same address 

• To implement this ability we need a protocol (set of rules) to 

track the "state" of each cache block

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.

P

X

X

P

X

P

X’

X

P

X

T=0: Store X T=1: Load X

14.8

Write Back Cache Coherency Protocols

• Write invalidate protocols (“Ownership Protocols”)

• Basic 3-state (MSI) Protocol

– I = ___________: Not in cache or invalidated earlier

– RO (Read-Only) = __________: Processors has a valid block but so 

might other caches.  Thus it is only safe to read their copy (but not 

write to it)  

– RW (Read-Write) = ___________: Processors has modified (written) 

to the block and it is guaranteed to have the only copy (no other 

caches have a copy).  Thus it is only safe to read or write.

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.



14.9

Write Invalidate Snoopy Protocol

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.

M S

W(i)

_____

I

____________

________

_____

R(i)W(i)

• R(i) = Read by the local processor
• W(i) = Write by the local processor
• R(k) = Read by some remote processor, k
• W(k) = Write by some remote processor, k

14.10

Remote Read

M S

W(i)

W(k)

I

R(k)W(i)

R(i)
R(i),
R(k)

W(k)

R(i)W(i)

M S

W(i)

W(k)

I

R(k)W(i)

R(i)
R(i),
R(k)

W(k)

R(i)W(i)

If you have the 

only copy and 

another processor 

wants to read the 

data

The other 

processor  goes 

from invalid to 

read-only

Local View

Remote View

14.11

Local Write

RW RO

W(i)

W(k)

INV

R(k)W(i)

R(i)
R(i),
R(k)

W(k)

R(i)W(i)

RW RO

W(i)

W(k)

INV

R(k)W(i)

R(i)
R(i),
R(k)

W(k)

R(i)W(i)

Upgrade your 

access

Invalidate others’ 

copy so no one 

else has the block

Local View

Remote View

14.12

Remote Read

RW RO

W(i)

W(k)

INV

R(k)W(i)

R(i)
R(i),
R(k)

W(k)

R(i)W(i)

RW RO

W(i)

W(k)

INV

R(k)W(i)

R(i)
R(i),
R(k)

W(k)

R(i)W(i)

No change

Remote processor 

gets a copy too

Local View

Remote View



14.13

Coherency Example

Processor 

Activity

P1 $ 

Content

P1 Block 

State 

(M,S,I)

P2 $ 

Content

P2 Block 

State 

(M,S,I)

Memory

Contents

- - - - A

P1 reads 

block X

P2 reads 

block X

P1 writes 

block X=B

P2 reads 

block X

14.14

Another Coherency Example

Processor 

Activity

P1 $ 

Content

P1 Block 

State 

(M,S,I)

P2 $ 

Content

P2 Block 

State 

(M,S,I)

Memory

Contents

- - - - A

P1 reads 

block X

P1 writes

X=B

P2 writes 

X=C

P1 reads 

block X

14.15

Coherence Implementation

L1

P

L2
Bank/

L2
Bank

L2
Bank/

L2
Bank

Interconnection Network
Dual directory of 

tags is maintained 

to facilitate 

snooping

L1 Data
L1 

Tags

Snoop 
Tag 

Replica

P

L1 Data
L1 

Tags

Snoop 
Tag 

Replica

…

Shared L2 Cache

14.16

Is Cache Coherency = Atomicity?

• Does coherency take the place of locking/synchronization?

• ___, cache coherence only serializes _______ and does not 

serialize entire ______________________ sequences

– Coherence simply ensures two processors don’t read two different 

values of the same memory location

• Consider two threads performing:  sum += thread_val

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3P1 & P2 both read  sum P1 Writes new sum 

invalidating P2

if P2 Writes X it will get updated line from P1, 

but immediately overwrite it (not required to re-

read anything if not using locks, etc.



14.17

False Sharing

• Thread-independent (i.e. non-

shared) variables allocated on the 

same ____________

• Can cause a large performance 

_______________ due to cache 

coherence (invalidates, etc.)

int x = 0;

int y = 0;

void t1() { 

for(int x=N; x > 0; x--)

{ }

y = 1;

...

}

void t2() { 

while( y == 0);

{ }

printf(“Y was set to 1\n”);

}

T1 
(Wr. X)

$

T2 
(Rd. Y)

$

XCache Line Y

M I

T1 
(Wr. X)

$

T2 
(Rd. Y)

$
S S

YCache Line

XCache Line

int x = 0;

int y __attribute__ ((aligned (64))) = 0;

…

False Sharing Example

One solution: Alignment

14.18

Locks and Contention

• The more threads compete for a lock, the slower performance 

will be

– Continuous sequence of invalidate, get exclusive access to check lock, 

see it is already taken, repeat

• Options

– Use special locks (e.g. queuing locks where a thread takes a number 

and waits until it is called rather than continuously checking if the lock 

is free)

– Lock Granularity:  Use separate locks for each element in a data 

structure rather than the one lock for the whole structure

– Others that you will explore in CS350

14.19

DMA ENGINES

14.20

Direct Memory Access (DMA)

• Large buffers of data often 

need to be copied between:

– Memory and I/O (video data, 

network traffic, etc.)

– Memory and Memory (OS space 

to user app. space)

• DMA devices are small 

hardware devices that copy 

data from a source to 

destination freeing the 

processor to do “real” work

CPU Memory

I/O Bridge

I/O Device
(USB)

I/O Device
(Network)

System 
Bus

I/O Bus

DMA



14.21

Data Transfer w/o DMA

• Without DMA, processor would 

have to move data using a loop

• Move 16Kwords pointed to by 

(%esi) to (%edi)
movl $16384,%ecx

AGAIN: movl (%esi),%eax

movl %eax,(%edi)

add   $4,%esi

add   $4,%edi 

sub   $1,%ecx

jnz AGAIN

• Processor wastes valuable execution 

time moving data

CPU Memory

I/O Bridge

I/O Device
(USB)

I/O Device
(Network)

System 
Bus

I/O Bus

14.22

Data Transfer w/ DMA

• Processor sets values in DMA control 
registers

– Source Start Address

– Dest. Start Address

– Byte Count

– Control & Status (Start, Stop, Interrupt 
on Completion, etc.)

• DMA becomes “bus-master” 
(controls system bus to generate 
reads and writes) while processor is 
free to execute other code

– Small problem: Bus will be busy

– Hopefully, data & code needed by the 
CPU will reside in the processor’s cache

CPU Memory

I/O Bridge

I/O Device
(USB)

I/O Device
(Network)

System 
Bus

I/O Bus

DMA
DMA 
Control 
RegistersSrc

Dest
Cnt

14.23

DMA Engines

• Systems usually have multiple DMA engines/channels

• Each can be configured to be started/controlled by the 

processor or by certain I/O peripherals 

– Network or other peripherals can initiate DMA’s on their behalf

• Bus arbiter assigns control of the bus

– Usually winning requestor 

has control of the bus until it 

relinquishes it 

(turns off its request signal)

D
M

A
 

C
h

a
n

n
e

l 
0

D
M

A
 

C
h

a
n

n
e

l 
1

D
M

A
 

C
h

a
n

n
e

l 
2

D
M

A
 

C
h

a
n

n
e

l 
3

Bus Arbiter

Processor 
Core

Memory Peripheral Peripheral

Internal 
System Bus

Bus 
Masters

Slave 
devices

Requests / 
Grants


