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CS356 Unit 12b

Advanced Processor Organization
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Goals

• Understand the terms and ideas used in a 
modern, high-performance processor

• Various systems have different kinds of 
processors and you should understand the 
pros and cons of each kind of processor

• Terms to listen for and understand the 
concept:

– Superscalar/multiple issue, loop unrolling, register 
renaming, out-of-order execution, speculation, 
and branch prediction
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A New Instruction

• In x86, we often perform

– cmp %rax, %rbx

– je L1  or jne L1

• Many instruction sets have a single instruction that 
both compares and jumps (limited to registers only)

– je %rax, %rbx, L1

– jne %rax, %rbx, L1

• Let us assume x86 supports such an instruction in 
our subsequent discussion
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INSTRUCTION LEVEL PARALLELISM
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Have We Hit The Limit

• Under ideal circumstances, pipeline would 
allow us to achieve a throughput 
(IPC = Instructions per clock) of 1 

• Can we do better?  Can we execute more than 
one instruction per clock?

– Not with a single pipeline

– But what if we had multiple "pipelines"

– What if we fetched multiple instructions per clock 
and let them run down the pipeline in parallel

• Let's exploit parallelism!
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Exploiting Parallelism

• With increasing transistor budgets of modern processors (i.e. 
can do more things at the same time) the question becomes 
how do we find enough useful tasks to increase performance, 
or, put another way, what is the most effective ways of 
exploiting parallelism!

• Many types of parallelism available
– Instruction Level Parallelism (ILP): Overlapping instructions within a 

single process/thread of execution

– Thread Level Parallelism (TLP): Overlap execution of multiple 
processes / threads

– Data Level Parallelism (DLP): Overlap an operation (instruction) that is 
to be applied to multiple data values (usually in an array)
• for(i=0; i < MAX; i++) { A[i] = A[i] + 5; }

• We'll focus on ILP in this unit
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ld 0(%r8), %r9
and  %r10, %r11
or   %r11, %r13
sub  %r14, %r15
add  %r10, %r12
je $0,%r12,L1
xor %r15, %rax

Instruction Level Parallelism (ILP)

• Although a program defines a sequential ordering of instructions, in reality 
many instructions can be executed in parallel.  

• ILP refers to the process of finding instructions from a single program/thread 
of execution that can be executed in parallel

• Data flow (data dependencies) is what truly limits ordering
– We call these dependencies RAW (Read-After-Write) Hazards

• Independent instructions can be parallelized

• Control hazards also provide ordering constraints

ld %r8,0(%r9)  /  and %r10,%r11   /  sub %r14,%r15   /  add  %r10, %r12
/  or %r11,%r13    /                  /  je $0, %r12, L1
/                  /  xor %r15, %rax /

Cycle 1:

Cycle 2:

Cycle 3:

LD ADDSUBAND

JE

XOR

OR
Dependency 

Graph

write %r11

read %r11

write %r15

read %r15

write %r12

read %r12
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Basic Blocks

• Basic Block (def.) = Sequence of instructions that will 
always be executed together

– No conditional branches out

– No branch targets coming in

– Also called "straight-line" code

– Average size: 5-7 instrucs.

• Instructions in a basic block can be overlapped if 
there are no data dependencies

• Control dependences really limit our window of 
possible instructions to overlap

– Without extra hardware, we can only overlap execution of 
instructions within a basic block 

This is a 

basic block 

(starts w/ 

target, ends 

with branch)

ld 0(%r8),%r9

and  %r10,%r11

L1:  add  %r8,%r12

or   %r11,%r13

sub  %r14,%r10

jeq %r12,%r14,L1

xor %r10,%r15
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Superscalar

• When airplanes broke the sound barrier we said 
they were super-sonic

• When a processor (HW) can complete more than 1 
instruction per clock cycle we say they are super-
scalar

• Problem: The HW can execute 2 or more 
instructions during the same cycle but the SW may 
be written and compiled assuming 1 instruction 
executing at a time.

• Solutions

– Recompile the code and rely on the compiler to safely 
order instructions that can be run in parallel (static 
scheduling)

– Build the HW to be smart, reorder instructions on the 
fly while guaranteeing correctness (dynamic 
scheduling)

This Photo by Unknown Author is licensed under CC BY-NC-ND

http://presurfer.blogspot.com/2009/06/photos-of-fighter-jets-breaking-sound.html
https://creativecommons.org/licenses/by-nc-nd/3.0/
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Superscalar (Multiple Issue)

• Multiple "pipelines" that can fetch, decode, and 
potentially execute more than 1 instruction per clock

– k-way superscalar = Ability to complete up to k instructions 
per clock cycle

• Benefits

– Theoretical throughput greater than 1 (IPC > 1)

• Problems

– Hazards 
• Dependencies between instructions limiting parallelism

• Branch/jump requires flushing all pipelines

– Finding enough parallel instructions
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Data Flow and Dependency Graphs

• The compiler produces a 
sequential order of instructions

• Modern processors will 
transform the sequential order 
to execute instructions in 
parallel

• Instructions can be executed in 
any valid topological ordering of 
the dependency graph

LD

ADDSUBAND

JE

XOR

OR

ld 0(%r8), %r9
and  %r9, %r11
or   %r11, %r13
sub  %r14, %r15
add  %r10, %r12
je $0,%r12,L1
xor %r15, %r9
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STATIC MULTIPLE ISSUE MACHINES
Compiler-based solutions
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Static Multiple Issue

• Compiler is responsible for finding and packaging instructions 
that can execute in parallel into issue packets
– Only certain combinations of instructions can be in a packet together

– Instruction packet example:

• (1) Integer/Branch instruction slot

• (1) LD/ST instruction

• (1) FP operation 

• An issue packet is often thought of as an LONG instruction 
containing multiple instructions
(a.k.a. Very Long Instruction Word)
– Intel’s Itanium used this technique (static multiple issue) but called it 

EPIC (Explicitly Parallel Instruction Computer)
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Example 2-way VLIW machine

• One issue slot for INT/BRANCH operations & another for LD/ST 
instructions

• I-Cache reads out an entire issue packet (more than 1 instruction)

• HW is added to allow many registers to be accessed at one time 
– Just more multiplexers

• Address Calculation Unit (just a simple adder) 
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add %rcx,%rax

ld 8(%rdi),%rdx



12.15

2-way VLIW Scheduling

• 1.) No forwarding w/in an issue packet (between instructions in a packet)

• 2.) Full forwarding to previous instructions
– Those behind in the pipeline

• 3.) Still 1 stall cycle necessary when LD is followed by a dependent 
instruction
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Reg.

File
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Calc.
VLIW (issue 

packet)
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add %rcx,%rax

st %rax,0(%rdi)

sub %rax,%rbx

ld 0(%rdi),%rcx

or %rcx,%rdx

or %rcx,%rdx

ld 0(%rdi),%rcx

2

1

3

3

This Photo by Unknown Author is licensed under CC BY-SA

http://en.m.wikipedia.org/wiki/File:Tick_green_modern.svg
https://creativecommons.org/licenses/by-sa/3.0/
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Sample Scheduling

• Schedule the following 
loop body on our 2-way 
static issue machine

# %rdi = A
# %esi = n = # of iterations
L1: ld 0(%rdi),%r9

add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

void f1(int* A, int n) 
{

for( ; n != 0; n--, A++)
*A += 5; 

}

Int./Branch Slot LD/ST Slot

ld 0(%rdi),%r9

add  $-1,%esi

add  $5,%r9

add  $4,%rdi st %r9,0(%rdi)

jne $0,%esi,L1

Int./Branch Slot LD/ST Slot

add  $-1,%esi ld 0(%rdi),%r9

add  $4,%rdi

add  $5,%r9

jne $0,%esi,L1 st %r9,-4(%rdi)

w/o modifying original code but with code movement

IPC = 6 instrucs. / 5 cycles = 1.2 

w/ modifications and code movement

IPC = 6 instrucs. / 4 cycle = 1.5 

time



12.17

Annotated Example
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INT/BRANCH 

LD/ST

add $4,%rdi

st %r9,0(%rdi)

ld 0(%rdi),%r9

add $-1,%esiadd $5,%r9

jne $0,%esi,L1

nop

nop nop

nop

Int./Branch Slot LD/ST Slot

ld 0(%rdi),%r9

add  $-1,%esi

add  $5,%r9

add  $4,%rdi st %r9,0(%rdi)

jne $0,%esi,L1
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Loop Unrolling

• Often not enough ILP w/in a single iteration (body) of a loop

• However, different iterations of the loop are often independent 
and can thus be run in parallel

• This parallelism can be exposed in static issue machines via loop 
unrolling
– Copy the body of the loop k times and iterate only n/k times

– Instructions from different body iterations can be run in parallel 

void f1(int* A, int n) 
{

for( ; n != 0; n--, A++)
*A += 5; 

}

// Loop unrolled 4 times 
void f1(int* A, int n) 
{ // assume n is a multiple of 4

for( ; n != 0; n-=4, A+=4){
*A += 5; 
*(A+1) += 5;
*(A+2) += 5;
*(A+3) += 5;

} }
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Loop Unrolling

# %rdi = A
# %esi = n = # of iterations
L1: ld 0(%rdi),%r9

add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

void f1(int* A, int n) {
for( ; n != 0; n--, A++)

*A += 5; 
}

// Loop unrolled 4 times
for(i=0; i < MAX; i+=4){

A[i] = A[i] + 5;
A[i+1] = A[i+1] + 5;
A[i+2] = A[i+2] + 5;
A[i+3] = A[i+3] + 5;

}

# %rdi = A
# %esi = n = # of iterations
L1: ld 0(%rdi),%r9

add  $5,%r9
st %r9,0(%rdi)
ld 4(%rdi),%r9
add  $5,%r9
st %r9,4(%rdi)
ld 8(%rdi),%r9
add  $5,%r9
st %r9,8(%rdi)
ld 12(%rdi),%r9
add  $5,%r9
st %r9,12(%rdi)
add  $16,%rdi
add  $-4,%esi
jne $0,%esi,L1

Original Code

A side effect of unrolling is the 

reduction of overhead instructions (less 

branches and counter/ptr. updates

Unrolled 

Code



12.20

Code Movement & Data Hazards

• To effectively schedule the code, the compiler will often move 
code up or down but must take care not to change the intended 
program behavior

• Must deal with WAR (Write-After-Read) and WAW (Write-After-
Write) hazards in addition to RAW hazards when moving code
– WAW and WAR hazards are not TRUE hazards (no data communication 

between instrucs.) but simply conflicts because we want to use the same 
register…we call them name dependencies or antidependences!

– How can we solve?  Register renaming.

L1: add %r8, %r9
add %r9, %r10
ld 0(%r11),%r9

LD instruction is 

REALLY independent 

(only needs %r11).

Could LW instruction 

be moved between the 

2 add’s?

Not as is, WAR hazard

L1: add %r8, %r9
add %r9, %r10
ld 0(%r11), %r9
sub %r9, %r12

Could LD 

instruction be run 

in parallel with or 

before first add?

Not as is, WAW 

hazard

L1: add %r8, %r9
ld 0(%r11), %r9
add %r9, %r10

read %r9

write %r9

Original

Proposed

Wrong %r9 used

L1: ld 0(%r11), %r9 
add %r8, %r9
add %r9, %r10
sub %r9, %r12

Proposed

Original

Wrong %r9 used

write %r9

write %r9
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Register Renaming

• Unrolling is not enough because even 
though each iteration is independent 
there are conflicts in the use of 
registers (%r9 in this case)
– Can’t move another 'ld' instruction up until 

'st' is complete due to a WAR hazard even 
though there is not a true data dependence

• Since there is no true dependence (ld
does not need data from 'st' or 'add' 
above) we can solve the problem by 
register renaming

• Register Renaming: Using different 
registers to solve WAR / WAW hazards

# %rdi = A
# %esi = n = # of 
iterations
L1: ld 0(%rdi),%r9

add  $5,%r9
st %r9,0(%rdi)
ld 4(%rdi),%r9
add  $5,%r9
st %r9,4(%rdi)
ld 8(%rdi),%r9
add  $5,%r9
st %r9,8(%rdi)
ld 12(%rdi),%r9
add  $5,%r9
st %r9,12(%rdi)
add  $16,%rdi
add  $-4,%esi
jne $0,%esi,L1

? read %r9

write %r9

write %r9
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Scheduling w/ Unrolling & Renaming

• Schedule the following 
loop body on our 2-way 
static issue machine
# %rdi = A
# %esi = n = # of 
iterations
L1: ld 0(%rdi),%r9

add  $5,%r9
st %r9,0(%rdi)
ld 4(%rdi),%r10
add  $5,%r10
st %r10,4(%rdi)
ld 8(%rdi),%r11
add  $5,%r11
st %r11,8(%rdi)
ld 12(%rdi),%r12
add  $5,%r12
st %r12,12(%rdi)
add  $16,%rdi
add  $-4,%esi
jne $0,%esi,L1

Int./Branch Slot LD/ST Slot

ld 0(%rdi),%r9

add  $-4,%esi ld 4(%rdi),%r10

add  $5,%r9 ld 8(%rdi),%r11

add  $5,%r10 ld 12(%rdi),%r12

add  $5,%r11 st %r9,0(%rdi)

add  $5,%r12 st %r10,4(%rdi)

add $16,%rdi st %r11,8(%rdi)

jne $0,%esi,L1 st %r12,-4(%rdi)

w/ Loop Unrolling and Register Renaming

(Notice how the compiler would have to modify the code to 

effectively reschedule)

IPC = 15 instrucs. / 8 cycle = 1.875 
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Data Dependency Hazards Summary

• RAW = Only real data dependence

– Must be respected in terms of code movement and 
ordering

– Forwarding reduces latency of dependent instructions

• WAW and WAR hazards = Antidependencies

– Solved by using register renaming

• RAR = No issues / dependencies
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Loop Unrolling & Register Renaming Summary

• Loop unrolling increases code size (memory needed to store 
instructions)

• Register renaming burns more registers and thus may require 
HW designers to add more registers

• Must have some amount of independence between loop 
bodies
– Dependence between iterations known as loop carried dependence

// Dependence between iterations 
A[0] = 5;
for(i=1; i < MAX; i++)

A[i] = A[i-1] + 5;



12.25

Memory Hazard Issue
• Suppose %rsi and %rdi are passed in as arguments to a function, 

can we reorder the instructions below?
– No, if %rsi == %rdi we have a data dependency in memory

• Data dependencies can occur via memory and are harder for the 
compiler to find at compile time forcing it to be conservative

ld 0(%rsi),%edx
addl $5,%edx      
st %edx,0(%rsi) 

ld 0(%rdi),%eax
addl $1,%eax      
st %eax,0(%rdi) 

Can we move the 2nd ‘ld’ up to enhance 

performance? No…Need to wait for ‘st’ !!

Int./Branch Slot LD/ST Slot

ld 0(%rsi),%edx

ld 0(%rdi),%eax

addl $5,%edx

addl $1,%eax st %edx,0(%rsi)

st %eax,0(%rdi) 

Can we reorder 

these 

instructions?
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Memory Disambiguation

• Data dependencies occur in MEMORY and not just registers

• Memory RAW dependencies are also made harder because of different ways 
of addressing the same memory location

– Can the following be reordered?

– st %eax, 4(%rdi)
ld -12(%rsi), %ecx

– No!  What if %rsi = %rdi + 16

• Memory disambiguation refers to the process of determining if a sequence of 
stores and loads reference the same address (ordering often needs to be 
maintained)

• We can only reorder LD and ST instructions if we can disambiguate their 
addresses to determine any RAW, WAR, WAW hazards

– LD -> LD is always fine (RAR)

– ST -> LD (RAW), LD -> ST (WAR) or ST -> ST (WAW) hazards that need to be 
disambiguated
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Itanium 2 Case Study

• Max 6 instruction issues/clock

• 6 Integer Units, 4 Memory units, 3 Branch, 2 FP

– Although full utilization is rare

• Registers

– (128) 64-bit GPR’s

– (128) FPR’s

• On-chip L3 cache (12 MB or cache memory)
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Static Multiple Issue Summary

• Compiler is in charge of reordering, renaming, 
unrolling original program code to achieve better 
performance

• Processor is designed to fetch/decode/execute 
multiple instructions per cycle in the order 
determined by the compiler

• Pros: HW can be simpler and thus faster/smaller

– More cores

– Potentially higher clock rates

• Cons: Requires recompilation

– No support for legacy software
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DYNAMIC MULTIPLE ISSUE 
MACHINES

HW-based solutions
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Overcoming the Memory Latency

• What happens to instruction execution if we have a cache 
miss?
– All instructions behind us need to stall!

– Could take potentially hundreds of clock cycles to fetch the data

• Can we over come this?
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Out-Of-Order Execution

• Idea:  Have processor find dependencies as instructions are 
fetched/decoded and execute independent instructions that come after 
stalled instructions

– Known as Out-of-Order Execution or Dynamic Scheduling

– HW will determine the "dependency" graph at runtime and as long as an 
instruction isn't waiting for an earlier instruction, let it execute!

# %rdi = A
# %esi = n = # of iterations
# %rdx = s
f1: 

ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1: ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

void f1(int* A, int n, int* s) 
{ *s += 1;
for( ; n != 0; n--, A++)
*A += 5; 

}

ld 0(%rdx),%r8

add $1,%r8

st %r8,0(%rdx)

ld 0(%rdi),%r9

add $5,%r9

st %r9,0(%rdi)

True (RAW or 

control) dependence

Miss

CACHE MISS

STALL

STALL

independent

independent

independent
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Organization for OoO Execution

I-Cache

Block Diagram Adapted 

from Prof. Michel Dubois

(Simplified for CS356)
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clock cycle in PROGRAM ORDER 

(i.e. normal order generated by 

the compiler)

Decode & dispatch multiple 

instructions per cycle tracking 

dependencies on earlier 

instructions

Instructions wait in queues 

until their respective 

functional unit (the 

hardware that will compute 

their value) is free AND 

they have their data 

available (from the 

instructions they depend 

upon).

Results of multiple 

instructions can be written 

back per cycle.  Results 

are broadcast to any 

instruction waiting for that 

result.

Tracks which 

instruction is the 

latest producer 

of a register. 

(Helps track the 

dependencies)

# %rdi = A
# %esi = n = # of 
iterations
# %rdx = s
f1: 
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1
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Organization for OoO Execution

I-Cache

Register 

Status 

Table

2:addl $1,[res1]

3:st [res2],0(%rdx)

1:ld 0(%rdx),%r8
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Instructions wait in queues 

until their respective 

functional unit (the 

hardware that will compute 

their value) is free AND 

they have their data 

available (from the 

instructions they depend 

upon).

Results of multiple 

instructions can be written 

back per cycle.  Results 

are broadcast to any 

instruction waiting for that 

result.

# %rdi = A
# %esi = n = # of 
iterations
# %rdx = s
f1: 
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

Miss

Assume we can 

dispatch 3 instructions 

per cycle
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Organization for OoO Execution

I-Cache

Register 

Status 

Table

5:addl $5,[res4]

2:addl $1,[res1]

6:st [res5],0(%rdi)

4:ld 0(%rdi),%r9

3:st [res2],0(%rdx)

1:ld 0(%rdx),%r8
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Instructions wait in queues 

until their respective 

functional unit (the 

hardware that will compute 

their value) is free AND 

they have their data 

available (from the 

instructions they depend 

upon).

Results of multiple 

instructions can be written 

back per cycle.  Results 

are broadcast to any 

instruction waiting for that 

result.

# %rdi = A
# %esi = n = # of 
iterations
# %rdx = s
f1: 
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

STALLED

Assume we can 

dispatch 3 instructions 

per cycle
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Organization for OoO Execution

I-Cache

Register 

Status 

Table

5:addl $5,[res4]

2:addl $1,[res1]

6:st [res5],0(%rdi)

4:ld 0(%rdi),%r9

3:st [res2],0(%rdx)

1:ld 0(%rdx),%r8
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Instructions wait in queues 

until their respective 

functional unit (the 

hardware that will compute 

their value) is free AND 

they have their data 

available (from the 

instructions they depend 

upon).

Results of multiple 

instructions can be written 

back per cycle.  Results 

are broadcast to any 

instruction waiting for that 

result.

# %rdi = A
# %esi = n = # of 
iterations
# %rdx = s
f1: 
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

STALLED

#4 LD 0(%rdi),%r9 has all its 

data and thus can jump 

ahead of the other stalled LD 

and the ST that is dependent 

on that LD. It executes out of 

order.
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Organization for OoO Execution

I-Cache

Register 

Status 

Table

8: add $-1,%esi

7: add $4,%rdi

5:addl $5,[res4]

2:addl $1,[res1]

6:st [res5],0(%rdi)

3:st [res2],0(%rdx)

1:ld 0(%rdx),%r8

Integer / 

Branch
D-Cache Div Mul

Instruc. 

Queue

R
e
g

. 
F

il
e

In
t.

 Q
u

e
u

e
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Common Data Bus

Issue 

Unit

Dispatch

Instructions wait in queues 

until their respective 

functional unit (the 

hardware that will compute 

their value) is free AND 

they have their data 

available (from the 

instructions they depend 

upon).

Results of multiple 

instructions can be written 

back per cycle.  Results 

are broadcast to any 

instruction waiting for that 

result.

# %rdi = A
# %esi = n = # of 
iterations
# %rdx = s
f1: 
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

STALLED

Once the #4 LD reads from 

cache (assume cache hit) it 

will broadcast its value and 

the dependent #5 ADD will 

pick it up and be able to 

execute.

Meanwhile, the next 

instructions can be 

dispatched

Result of [4: ld 0(%rdi),%r9]
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Organization for OoO Execution

I-Cache

Register 

Status 

Table

2:addl $1,[res1]

6:st [res5],0(%rdi)

3:st [res2],0(%rdx)

1:ld 0(%rdx),%r8

Integer / 

Branch
D-Cache Div Mul

Instruc. 
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Common Data Bus

Issue 

Unit

Dispatch

Instructions wait in queues 

until their respective 

functional unit (the 

hardware that will compute 

their value) is free AND 

they have their data 

available (from the 

instructions they depend 

upon).

Results of multiple 

instructions can be written 

back per cycle.  Results 

are broadcast to any 

instruction waiting for that 

result.

# %rdi = A
# %esi = n = # of 
iterations
# %rdx = s
f1: 
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

STALLED

Once the #5 ADD computes 

its sum it will broadcast its 

value and the dependent #6 

ST will pick it up and be able 

to execute.

Meanwhile other ADDs can 

execute and complete.

Result of [7: addl $4,%rdi]

8: add $-1,%esi

7: add $4,%rdi



12.38

Organization for OoO Execution

I-Cache

Register 

Status 

Table

2:addl $1,[res1]

3:st [res2],0(%rdx)
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Common Data Bus

Issue 

Unit

Dispatch

Instructions wait in queues 

until their respective 

functional unit (the 

hardware that will compute 

their value) is free AND 

they have their data 

available (from the 

instructions they depend 

upon).

Results of multiple 

instructions can be written 

back per cycle.  Results 

are broadcast to any 

instruction waiting for that 

result.

# %rdi = A
# %esi = n = # of 
iterations
# %rdx = s
f1: 
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

MISS RESOLVED

When the cache finally 

resolves the miss, #1 LD will 

broadcast its value and the 

dependent #2 ADD will pick 

it up and be able to execute.

From there the #3 ST will be 

able to execute next.

Result of [1: ld 0(%rdx),%r8]
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Dynamic Multiple Issue

• Burden of scheduling code for parallelism is placed on the HW 
and is performed as the program runs (not necessarily at 
compile time)
– Compiler can help by moving code, but HW guarantees correct 

operation no matter what

• Goal is for HW to determine data dependencies and let 
independent instructions execute even if previous instructions 
(dependent on something) are stalled
– We call this a form of Out-of-Order Execution

• Primarily used in conjunction with speculation methods but 
we’ll start by examining non-speculative methods (i.e. don’t 
execute until all previous branches are resolved)
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Problems with OoO Execution

• What if an exception (e.g. page fault) occurs in an earlier instruction AFTER later 
instructions have already completed

– OS will save the state of the program and handle the page miss

– When OS resumes it will restart the process at the ST instruction

– The subsequent instructions will execute for a 2nd time.  BAD!!!

• I need to fetch and dispatch multiple instructions per cycle but when I hit a 
jump/branch I don't know which way to fetch

• Solution: Speculative Execution with ability to "Rollback"

# %rdi = A
# %esi = n = # of 
iterations
# %rdx = s
f1: 
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne %r8,%esi,L1
next instruc.

Completed

Resume after 
STALLING

Page Fault!

Where next
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SPECULATIVE EXECUTION
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Speculation w/ Dynamic Scheduling

• Basic block size of 5-7 instructions between 
branches limits ability to issue/execute 
instructions 

– For safety, we might consider stalling (stop 
dispatching instructions) until we know the 
outcome of a jump/branch

• But speculation allows us to predict a branch 
outcome and continue issuing and executing
down that path

• Of course, we could be wrong so we need the 
ability to roll-back the instructions we should 
not have executed if we mispredict

• We add a structure known as the commit unit 
(or re-order buffer / ROB)

B
a
s

ic
 B

lo
c

k

ld 0(%r8),%r9
and  %r10,%r11

L1:  add  %r8,%r12
or   %r11,%r13
sub  %r14,%r10
jeq %r12,%r14,L1
xor %r10,%r15

STALL until 
we know 
outcome

Cache Miss



12.43

Out-Of-Order Diagram

In-Order
Issue Logic

( > 1 instruc. 

per clock)

INT 

MUL/DIV

INT 

ALU

FP

ADD

FP

MUL/DIV

Load/

Store
C

o
m

m
it

 U
n

it

Out-of-Order

In-Order

Results forwarded to 

dependent (RAW) instructions

Writeback
(to D$ or 

registers)

Re-Order Buffer

(ROB)

Temporarily buffers 

results of instructions 

until earlier instructions 

complete and writeback 

IN ORDER

Queues for 

functional 

units

Completed instructions waiting 

to complete in-order

Instruc. i+n = newest

Instruc. i = oldest

Front End

Back End
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Commit Unit (ROB)

• ROB tail entry is allocated for each instruction on issue 
(ensuring instruction entries are maintained in 
program order)

• When an instruction completes, its results are 
forwarded to others but is also stored in the ROB 
(rather than writing back to reg. file) until it reaches 
the head of the ROB

• Commit unit only commits the instruction(s) at the 
head of the queue and only when it is fully completed

– Ensures that everything committed was correct

– If we hit an exception or misspeculate/mispredict a 
branch then throw away everyone behind it in the ROB 
and start fresh using the correct outcome

C
o

m
m

it
 U

n
it

ST
JEQ

XOR / ADD ????

LD
AND
ADD
SUB

Writeback
(to D$ or 

registers)

Re-Order Buffer

(ROB)

Tail

Head

(Orange): Executed 

instrucs. and 

waiting to write back 

(Gray): Stalled or 

not yet executed 

ld 0(%r8),%r9
and  %r9,%r11

L1:  add  %r8,%r12
sub  %r8,%r10
st %r9,0(%r13)
jeq %r9,%r14,L1
xor %r10,%r15
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Commit Unit (ROB)

• What happens if the ST instruction 
that is STALLED ends up causing a 
page fault… 
– ROB allows us to throw away instructions 

after it and replay them after the page fault 
is handled

• When we get to the JEQ, we don't 
know %r9 so we'll just guess 
(predict) the outcome and fetch 
down that predicted path
– If we mispredict, ROB allows us to throw 

away instruction results

C
o

m
m

it
 U

n
it

ST
JEQ

XOR / ADD ????

LD
AND
ADD
SUB

Writeback
(to D$ or 

registers)

Re-Order Buffer

(ROB)

Tail

Head

ld 0(%r8),%r9
and  %r9,%r11

L1:  add  %r8,%r12
sub  %r8,%r10
st %r9,0(%r13)
jeq %r9,%r14,L1
xor %r10,%r15

Exception!

Mispredicted
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Branch Prediction + Speculation

• To keep the backend fed with enough instructions we 
need to predict a branch's outcome and perform 
"speculative" execution beyond the predicted 
(unresolved) branch

– Roll back mechanism (flush) in case of misprediction

Conditional branches

Basic Block

Head of ROB

Speculative 

Execution 

Path

NT-path T-path
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Speculation Example

• Predict branches and 
execute most likely path

– Simply flush ROB entries 
after the mispredicted 
branch

– Need good prediction 
capabilities to make this 
useful

T NT

NTT

ROB Head

(Assume stall)

Spec. Path

C
o

m
m

it
 U

n
it

Time 2b: 

Flush ROB/Pipeline of 

instructions behind it

C
o

m
m

it
 U

n
it

Time 1: ROB

Red Entries = Predicted 

Branches

C
o

m
m
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n
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Time 3: ROB

Pipeline begins to fill w/ 

correct path

C
o

m
m
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n
it

Time 2a: ROB

Black Entry = Mispredicted 

branch
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BONUS MATERIAL
Not responsible for this material
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BRANCH PREDICTION
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Branch Prediction

• Since basic blocks are often small, multiple issue (static 
or dynamic) processors may encounter a branch every 
1-2 cycles

• We not only need to know the outcome of the branch 
but the target of the branch

– Branch target: Branch target buffer (cache)

– Branch outcome:  Static (compile-time) or dynamic (run-time 
/ HW assisted) prediction techniques

• To keep the pipeline full and make speculation efficient 
and not wasteful, the processor needs accurate 
predictions
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Branch Target Availability
• Branches perform PC = PC + displacement where displacement is stored as 

part of the instruction

• Usually can’t get the target until after the instruction is completely fetched 
(displacement is part of instruction)

– May be 2-3 cycles in a deeply pipelined processor 
(ex. [I-TLB, I-Cache Lookup, I-Cache Access, Decode]

– If a 4-way superscalar and 3 cycle branch penalty, we throw away 12 instructions 
on a misprediction

• Key observation:  Branches always branch to same place (target is constant 
for each branch)

P
C I-TLB 

Access

I-$

Look-

up

P
ip
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 R

e
g
.

I-$

Access
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ip

e
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e
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Decode
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 R

e
g
.

P
ip

e
 R

e
g
.

Branch instruction still being 

fetched

Branch instruction 

available here

Branch target (PC+d) 

available here

Would like to have branch target 

available in 1st stage
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Finding the Branch Target 

• Key observation:  Jump/branches always branch to same place (target is constant 
for each branch)

– The first time we fetch a jump we'll have no idea where it is going to jump to and thus 
have to wait several cycles

– But let's save the address where the jump instruction lives AND where it wants to jump 
to (i.e. the target)

– Next time the PC gets to the starting address of the jump we can lookup the target 
quickly

– Keep all this info in a small "branch target cache/buffer"

00000000004004d6 <sum>:
4004d6:       85 f6                   test   %esi,%esi
4004d8:       7e 1d                   jle 4004f7 <sum+0x21>
4004da:       48 89 fa                mov %rdi,%rdx
4004dd:       8d 46 ff lea    -0x1(%rsi),%eax
4004e0:       48 8d 4c 87 04          lea    0x4(%rdi,%rax,4),%rcx
4004e5:       b8 00 00 00 00          mov $0x0,%eax
4004ea:       03 02                   add    (%rdx),%eax
4004ec:       48 83 c2 04             add    $0x4,%rdx
4004f0:       48 39 ca                cmp %rcx,%rdx
4004f3:       75 f5                   jne 4004ea <sum+0x14>
4004f5:       eb 05                   jmp 4004fc <sum+0x26>
4004f7:       b8 00 00 00 00          mov $0x0,%eax
4004fc:       c6 05 36 0b 20 00 01    movb $0x1,0x200b36(%rip) 
400503:       c3                      retq

Jump Instruc. Address Jump Target

0x4004d8 0x4004f7

0x4004f3 0x4004ea

0x4004f5 0x4004fc
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Branch Target Buffer

• Idea: Keep a cache (branch target buffer / BTB) of branch 
targets that can be accessed using the PC in the 1st stage
– Cache holds target addresses and is accessed using the PC (address of 

instruction)

– First time a branch is executed, cache will miss, and we’ll take the branch 
penalty but save its target address in the cache

– Subsequent accesses will hit (until evicted) in the BTB and we can use 
that target if we predict the branch is taken. 

• Note: BTB is a “fully-associative” cache (search all entries for PC 
match)…thus it can’t be very large

P
C I-TLB Access

BTB

Target PC
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Branch Outcome Prediction

• Now that we have predicted the target, 
we now need to predict the outcome

• Static prediction

– Have compiler make a fixed guess and put 
that as a "hint" in the instruction itself

– Effective for loops

• Dynamic prediction
– Some jumps are data dependent (e.g. if(x < y)) 

– Keep some "history"/records of each branches 
outcomes from the past & use that to predict 
the future

– Store that history in a cache

– Questions:

• What history should we use to predict a branch

• How much history should we use/keep to predict 
a branch

Loop Body

Loop 

Check

“After” Code

T

NT

P
C I-TLB Access

BTB Target PC

(PC+d)

Predictors Outcome

(T/NT)
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Local vs. Global History

• What history should we look at?  
– Should we look at just the previous 

executions of only the particular branch 
we’re currently predicting or at 
surrounding branches as well

• Local History:  The previous outcomes 
of that branch only
– Usually good for loop conditions

• Global History:  The previous 
outcomes of the last m branches in 
time (other previous branches)

do  {
i--;
if(x == 2) { … }
if(y == 2) { … }
if(x == y) { … }  
// Better: Local or Global 

}
while (i > 0);       

// Better: Local or Global 
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Global (Correlating) Predictor

• Use the outcomes of the last m 
branches that were executed to 
select a prediction

– Given last m jumps, 2m possible 
combinations of outcomes & thus predictions
• When jeq1=NT and jeq2=NT, predict jne = T,

when jeq1=NT and jeq2=T, predict jne = NT,
etc.

– Branch predictor indexed
by concatenating LSB’s
of PC and m-bits of last
m branch outcomes 

je ...,L1 (T = 1)
...

je ...,L2 (NT = 0)
...

jne ...,L3 // use history
// of NT,T to
// predict            

P
C I-TLB Access

Predictors

H
is

to
ry

m-bits Concatenate
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Tournament Predictor

• Dynamically selects when to 
use the global vs. local 
predictor

– Accuracy of global vs. local 
predictor for a branch may vary 
for different branches

– Tournament predictor keeps the 
history of both predictors 
(global or local) for a branch and 
then selects the one that is 
currently the most accurate

Tournament 

Selector

Local 

Prediction

Global 

Prediction

Predictor 

exhibiting 

greatest 

accuracy
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Dynamic Scheduling Summary

• You can understand a modern architecture
– https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client)

• Software implications

– Code with a lot of branches will perform worse 
than regular code

– Many cache misses will limit the performance

• But compared to a statically scheduled 
processor…

https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client)
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Pros/Cons of Static vs. Dynamic

• Static
– HW can be simpler since compiler schedules code

– Compiler can see “deeper” in the code to find parallelism

– Used in many high-performance embedded processors like GPUs, etc. 
where code is more regular with high computation demand

• Dynamic
– Allows for performance increase even for legacy software

– Can be better at predicting unpredictable branches

– HW structures do not scale well (ROB, reservation stations, etc.) 
beyond small sizes and more waste (time & power)

– Better for unpredictable, general purpose control code
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PHYSICAL VS ARCHITECTURAL 
REGISTERS
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Virtual Registers?

• In static scheduling, the compiler 
accomplished register renaming by changing 
the instruction to use other programmer-
visible GPR’s

• In dynamic scheduling, the HW can "rename" 
registers on the fly
– In the code on the left we would want %r9 to be 

renamed to %r10, %r11, for each iteration

• Solution:  A level of indirection
– Let the register numbers be "virtual" and then 

perform translation to a "physical" register

– Every time we write to the same register we are 
creating  a "new version" of the register…so let's 
just allocate a physically different register

# %rdi = A
# %esi = n = # of 
iterations
# %rdx = s
f1: 
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

Trace of instructions over 3 

loop iterations.  Each iteration 

is independent if we can 

rename %r9
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Register Renaming

• Whenever an instruction 
produces a new value for 
a register, allocate a new 
physical register and 
update the table
– Mark the old physical 

register as "free" 

– Mark the newly allocated 
register as "used"

• An instruction that wants 
to read a register just 
uses whatever physical 
register the current 
mapping table indicates

%r1
%r0
%r2

orig rsi

orig rdi

ld's r9
%rdi
%rsi
%r9
...

Physical Registers

Mapping Table
%r5
%r6
%r7

%r0
%r1
%r2
%r3
%r4

# %rdi = A
# %esi = n = # of 
iterations
# %rdx = s
f1: 
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

Trace of instructions over 3 

loop iterations.  Each iteration 

is independent if we can 

rename %r9

%r1
%r0

%r2 %r3

orig rsi

add's r9

%rdi
%rsi
%r9
...

Physical Registers

Mapping Table
%r5
%r6
%r7

%r0
%r1
%r2
%r3
%r4

%r1 %r4
%r0 %r5
%r6

add's esi

ld's r9

orig rsi

%rdi
%rsi
%r9
...

Physical Registers

Mapping Table
%r5
%r6
%r7

%r0
%r1
%r2
%r3
%r4

orig rdi

ld's r9

orig rdi

ld's r9

add's r9

add's rdi

1
2

3

ld 0(%rdi),%r9

add   $5,%r9

add  $4,%rdi
add  $-1,%esi

…
ld 0(%rdi),%r9

used

used

used

used

used

free

used

free

free

free

free
used

used

used
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Architectural vs. Physical Registers

• Architectural registers = The 
(16) x86 registers visible to 
the programmer or compiler
– Truly just names ("virtual")

– The mapping table needs 1 
entry per architectural register

• Physical registers = A greater 
number of actual registers 
than architectural registers 
that is used as a “pool” for 
renaming

• Often a large pool of physical 
registers (80-128) to support 
large number of instructions 
executing at once or waiting 
in the commit unit 

%r1
%r0
%r2

orig rsi

orig rdi

ld's r9
%rdi
%rsi
%r9
...

Physical Registers

"Architectural 

Registers"

%r5
%r6
%r7

%r0
%r1
%r2
%r3
%r4

# %rdi = A
# %esi = n = # of 
iterations
# %rdx = s
f1: 
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

L1:
ld 0(%rdi),%r9
add  $5,%r9
st %r9,0(%rdi)
add  $4,%rdi
add  $-1,%esi
jne $0,%esi,L1

Trace of instructions over 3 

loop iterations.  Each iteration 

is independent if we can 

rename %r9

%r1
%r0

%r2 %r3

orig rsi

add's r9

%rdi
%rsi
%r9
...

Physical Registers

"Architectural 

Registers"

%r5
%r6
%r7

%r0
%r1
%r2
%r3
%r4

%r1 %r4
%r0 %r5
%r6

add's esi

ld's r9

orig rsi

%rdi
%rsi
%r9
...

Physical Registers

"Architectural 

Registers"

%r5
%r6
%r7

%r0
%r1
%r2
%r3
%r4

orig rdi

ld's r9

orig rdi

ld's r9

add's r9

add's rdi

1
2

3

ld 0(%rdi),%r9

add   $5,%r9

add  $4,%rdi
add  $-1,%esi

…
ld 0(%rdi),%r9

used

used

used

used

used

free

used

free

free

free

free
used

used

used


