
12.1

CS356 Unit 12b

Advanced Processor Organization

12.2

Goals

• Understand the terms and ideas used in a
modern, high-performance processor

• Various systems have different kinds of
processors and you should understand the
pros and cons of each kind of processor

• Terms to listen for and understand the
concept:

– Superscalar/multiple issue, loop unrolling, register
renaming, out-of-order execution, speculation,
and branch prediction

12.3

A New Instruction

• In x86, we often perform

– cmp %rax, %rbx

– je L1 or jne L1

• Many instruction sets have a single instruction that
both compares and jumps (limited to registers only)

– je %rax, %rbx, L1

– jne %rax, %rbx, L1

• Let us assume x86 supports such an instruction in
our subsequent discussion

12.4

INSTRUCTION LEVEL PARALLELISM

12.5

Have We Hit The Limit

• Under ideal circumstances, pipeline would
allow us to achieve a throughput
(IPC = Instructions per clock) of 1

• Can we do better? Can we execute more than
one instruction per clock?

– Not with a single pipeline

– But what if we had multiple "pipelines"

– What if we fetched multiple instructions per clock
and let them run down the pipeline in parallel

• Let's exploit parallelism!

12.6

Exploiting Parallelism

• With increasing transistor budgets of modern processors (i.e.
can do more things at the same time) the question becomes
how do we find enough useful tasks to increase performance,
or, put another way, what is the most effective ways of
exploiting parallelism!

• Many types of parallelism available
– Instruction Level Parallelism (ILP): Overlapping instructions within a

single process/thread of execution

– Thread Level Parallelism (TLP): Overlap execution of multiple
processes / threads

– Data Level Parallelism (DLP): Overlap an operation (instruction) that is
to be applied to multiple data values (usually in an array)
• for(i=0; i < MAX; i++) { A[i] = A[i] + 5; }

• We'll focus on ILP in this unit

12.7

ld 0(%r8), %r9
and %r10, %r11
or %r11, %r13
sub %r14, %r15
add %r10, %r12
je $0,%r12,L1
xor %r15, %rax

Instruction Level Parallelism (ILP)

• Although a program defines a sequential ordering of instructions, in reality
many instructions can be executed in parallel.

• ILP refers to the process of finding instructions from a single program/thread
of execution that can be executed in parallel

• Data flow (data dependencies) is what truly limits ordering
– We call these dependencies RAW (Read-After-Write) Hazards

• Independent instructions can be parallelized

• Control hazards also provide ordering constraints

ld %r8,0(%r9) / and %r10,%r11 / sub %r14,%r15 / add %r10, %r12
/ or %r11,%r13 / / je $0, %r12, L1
/ / xor %r15, %rax /

Cycle 1:

Cycle 2:

Cycle 3:

LD ADDSUBAND

JE

XOR

OR
Dependency

Graph

write %r11

read %r11

write %r15

read %r15

write %r12

read %r12

12.8

Basic Blocks

• Basic Block (def.) = Sequence of instructions that will
always be executed together

– No conditional branches out

– No branch targets coming in

– Also called "straight-line" code

– Average size: 5-7 instrucs.

• Instructions in a basic block can be overlapped if
there are no data dependencies

• Control dependences really limit our window of
possible instructions to overlap

– Without extra hardware, we can only overlap execution of
instructions within a basic block

This is a

basic block

(starts w/

target, ends

with branch)

ld 0(%r8),%r9

and %r10,%r11

L1: add %r8,%r12

or %r11,%r13

sub %r14,%r10

jeq %r12,%r14,L1

xor %r10,%r15

12.9

Superscalar

• When airplanes broke the sound barrier we said
they were super-sonic

• When a processor (HW) can complete more than 1
instruction per clock cycle we say they are super-
scalar

• Problem: The HW can execute 2 or more
instructions during the same cycle but the SW may
be written and compiled assuming 1 instruction
executing at a time.

• Solutions

– Recompile the code and rely on the compiler to safely
order instructions that can be run in parallel (static
scheduling)

– Build the HW to be smart, reorder instructions on the
fly while guaranteeing correctness (dynamic
scheduling)

This Photo by Unknown Author is licensed under CC BY-NC-ND

http://presurfer.blogspot.com/2009/06/photos-of-fighter-jets-breaking-sound.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

12.10

Superscalar (Multiple Issue)

• Multiple "pipelines" that can fetch, decode, and
potentially execute more than 1 instruction per clock

– k-way superscalar = Ability to complete up to k instructions
per clock cycle

• Benefits

– Theoretical throughput greater than 1 (IPC > 1)

• Problems

– Hazards
• Dependencies between instructions limiting parallelism

• Branch/jump requires flushing all pipelines

– Finding enough parallel instructions

12.11

Data Flow and Dependency Graphs

• The compiler produces a
sequential order of instructions

• Modern processors will
transform the sequential order
to execute instructions in
parallel

• Instructions can be executed in
any valid topological ordering of
the dependency graph

LD

ADDSUBAND

JE

XOR

OR

ld 0(%r8), %r9
and %r9, %r11
or %r11, %r13
sub %r14, %r15
add %r10, %r12
je $0,%r12,L1
xor %r15, %r9

12.12

STATIC MULTIPLE ISSUE MACHINES
Compiler-based solutions

12.13

Static Multiple Issue

• Compiler is responsible for finding and packaging instructions
that can execute in parallel into issue packets
– Only certain combinations of instructions can be in a packet together

– Instruction packet example:

• (1) Integer/Branch instruction slot

• (1) LD/ST instruction

• (1) FP operation

• An issue packet is often thought of as an LONG instruction
containing multiple instructions
(a.k.a. Very Long Instruction Word)
– Intel’s Itanium used this technique (static multiple issue) but called it

EPIC (Explicitly Parallel Instruction Computer)

12.14

Example 2-way VLIW machine

• One issue slot for INT/BRANCH operations & another for LD/ST
instructions

• I-Cache reads out an entire issue packet (more than 1 instruction)

• HW is added to allow many registers to be accessed at one time
– Just more multiplexers

• Address Calculation Unit (just a simple adder)

I-Cache

D-Cache

ALU
Reg.

File

(4 Read,

2 Write)

PC

Addr.

Calc.
Issue Packet =

More than 1

instruction

In
te

g
e

r
S

lo
t

L
D

/S
T

 S
lo

t

I-Cache

D-Cache

ALU

Reg.

File

PC

Addr.

Calc.

In
te

g
e

r
S

lo
t

L
D

/S
T

 S
lo

t

INT/BRANCH

LD/ST

add %rcx,%rax

ld 8(%rdi),%rdx

12.15

2-way VLIW Scheduling

• 1.) No forwarding w/in an issue packet (between instructions in a packet)

• 2.) Full forwarding to previous instructions
– Those behind in the pipeline

• 3.) Still 1 stall cycle necessary when LD is followed by a dependent
instruction

I-Cache

D-Cache

ALU

Reg.

File

PC

Addr.

Calc.
VLIW (issue

packet)

In
te

g
e

r
S

lo
t

L
D

/S
T

 S
lo

t

add %rcx,%rax

st %rax,0(%rdi)

sub %rax,%rbx

ld 0(%rdi),%rcx

or %rcx,%rdx

or %rcx,%rdx

ld 0(%rdi),%rcx

2

1

3

3

This Photo by Unknown Author is licensed under CC BY-SA

http://en.m.wikipedia.org/wiki/File:Tick_green_modern.svg
https://creativecommons.org/licenses/by-sa/3.0/

12.16

Sample Scheduling

• Schedule the following
loop body on our 2-way
static issue machine

%rdi = A
%esi = n = # of iterations
L1: ld 0(%rdi),%r9

add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

void f1(int* A, int n)
{

for(; n != 0; n--, A++)
*A += 5;

}

Int./Branch Slot LD/ST Slot

ld 0(%rdi),%r9

add $-1,%esi

add $5,%r9

add $4,%rdi st %r9,0(%rdi)

jne $0,%esi,L1

Int./Branch Slot LD/ST Slot

add $-1,%esi ld 0(%rdi),%r9

add $4,%rdi

add $5,%r9

jne $0,%esi,L1 st %r9,-4(%rdi)

w/o modifying original code but with code movement

IPC = 6 instrucs. / 5 cycles = 1.2

w/ modifications and code movement

IPC = 6 instrucs. / 4 cycle = 1.5

time

12.17

Annotated Example

I-Cache

D-Cache

ALU
Reg.

File

(4 Read,

2 Write)

PC

Addr.

Calc.
Issue Packet =

More than 1

instruction

In
te

g
e

r
S

lo
t

L
D

/S
T

 S
lo

t

I-Cache

D-Cache

ALU

Reg.

File

PC

Addr.

Calc.

In
te

g
e

r
S

lo
t

L
D

/S
T

 S
lo

t

INT/BRANCH

LD/ST

add $4,%rdi

st %r9,0(%rdi)

ld 0(%rdi),%r9

add $-1,%esiadd $5,%r9

jne $0,%esi,L1

nop

nop nop

nop

Int./Branch Slot LD/ST Slot

ld 0(%rdi),%r9

add $-1,%esi

add $5,%r9

add $4,%rdi st %r9,0(%rdi)

jne $0,%esi,L1

12.18

Loop Unrolling

• Often not enough ILP w/in a single iteration (body) of a loop

• However, different iterations of the loop are often independent
and can thus be run in parallel

• This parallelism can be exposed in static issue machines via loop
unrolling
– Copy the body of the loop k times and iterate only n/k times

– Instructions from different body iterations can be run in parallel

void f1(int* A, int n)
{

for(; n != 0; n--, A++)
*A += 5;

}

// Loop unrolled 4 times
void f1(int* A, int n)
{ // assume n is a multiple of 4

for(; n != 0; n-=4, A+=4){
*A += 5;
*(A+1) += 5;
*(A+2) += 5;
*(A+3) += 5;

} }

12.19

Loop Unrolling

%rdi = A
%esi = n = # of iterations
L1: ld 0(%rdi),%r9

add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

void f1(int* A, int n) {
for(; n != 0; n--, A++)

*A += 5;
}

// Loop unrolled 4 times
for(i=0; i < MAX; i+=4){

A[i] = A[i] + 5;
A[i+1] = A[i+1] + 5;
A[i+2] = A[i+2] + 5;
A[i+3] = A[i+3] + 5;

}

%rdi = A
%esi = n = # of iterations
L1: ld 0(%rdi),%r9

add $5,%r9
st %r9,0(%rdi)
ld 4(%rdi),%r9
add $5,%r9
st %r9,4(%rdi)
ld 8(%rdi),%r9
add $5,%r9
st %r9,8(%rdi)
ld 12(%rdi),%r9
add $5,%r9
st %r9,12(%rdi)
add $16,%rdi
add $-4,%esi
jne $0,%esi,L1

Original Code

A side effect of unrolling is the

reduction of overhead instructions (less

branches and counter/ptr. updates

Unrolled

Code

12.20

Code Movement & Data Hazards

• To effectively schedule the code, the compiler will often move
code up or down but must take care not to change the intended
program behavior

• Must deal with WAR (Write-After-Read) and WAW (Write-After-
Write) hazards in addition to RAW hazards when moving code
– WAW and WAR hazards are not TRUE hazards (no data communication

between instrucs.) but simply conflicts because we want to use the same
register…we call them name dependencies or antidependences!

– How can we solve? Register renaming.

L1: add %r8, %r9
add %r9, %r10
ld 0(%r11),%r9

LD instruction is

REALLY independent

(only needs %r11).

Could LW instruction

be moved between the

2 add’s?

Not as is, WAR hazard

L1: add %r8, %r9
add %r9, %r10
ld 0(%r11), %r9
sub %r9, %r12

Could LD

instruction be run

in parallel with or

before first add?

Not as is, WAW

hazard

L1: add %r8, %r9
ld 0(%r11), %r9
add %r9, %r10

read %r9

write %r9

Original

Proposed

Wrong %r9 used

L1: ld 0(%r11), %r9
add %r8, %r9
add %r9, %r10
sub %r9, %r12

Proposed

Original

Wrong %r9 used

write %r9

write %r9

12.21

Register Renaming

• Unrolling is not enough because even
though each iteration is independent
there are conflicts in the use of
registers (%r9 in this case)
– Can’t move another 'ld' instruction up until

'st' is complete due to a WAR hazard even
though there is not a true data dependence

• Since there is no true dependence (ld
does not need data from 'st' or 'add'
above) we can solve the problem by
register renaming

• Register Renaming: Using different
registers to solve WAR / WAW hazards

%rdi = A
%esi = n = # of
iterations
L1: ld 0(%rdi),%r9

add $5,%r9
st %r9,0(%rdi)
ld 4(%rdi),%r9
add $5,%r9
st %r9,4(%rdi)
ld 8(%rdi),%r9
add $5,%r9
st %r9,8(%rdi)
ld 12(%rdi),%r9
add $5,%r9
st %r9,12(%rdi)
add $16,%rdi
add $-4,%esi
jne $0,%esi,L1

? read %r9

write %r9

write %r9

12.22

Scheduling w/ Unrolling & Renaming

• Schedule the following
loop body on our 2-way
static issue machine
%rdi = A
%esi = n = # of
iterations
L1: ld 0(%rdi),%r9

add $5,%r9
st %r9,0(%rdi)
ld 4(%rdi),%r10
add $5,%r10
st %r10,4(%rdi)
ld 8(%rdi),%r11
add $5,%r11
st %r11,8(%rdi)
ld 12(%rdi),%r12
add $5,%r12
st %r12,12(%rdi)
add $16,%rdi
add $-4,%esi
jne $0,%esi,L1

Int./Branch Slot LD/ST Slot

ld 0(%rdi),%r9

add $-4,%esi ld 4(%rdi),%r10

add $5,%r9 ld 8(%rdi),%r11

add $5,%r10 ld 12(%rdi),%r12

add $5,%r11 st %r9,0(%rdi)

add $5,%r12 st %r10,4(%rdi)

add $16,%rdi st %r11,8(%rdi)

jne $0,%esi,L1 st %r12,-4(%rdi)

w/ Loop Unrolling and Register Renaming

(Notice how the compiler would have to modify the code to

effectively reschedule)

IPC = 15 instrucs. / 8 cycle = 1.875

12.23

Data Dependency Hazards Summary

• RAW = Only real data dependence

– Must be respected in terms of code movement and
ordering

– Forwarding reduces latency of dependent instructions

• WAW and WAR hazards = Antidependencies

– Solved by using register renaming

• RAR = No issues / dependencies

12.24

Loop Unrolling & Register Renaming Summary

• Loop unrolling increases code size (memory needed to store
instructions)

• Register renaming burns more registers and thus may require
HW designers to add more registers

• Must have some amount of independence between loop
bodies
– Dependence between iterations known as loop carried dependence

// Dependence between iterations
A[0] = 5;
for(i=1; i < MAX; i++)

A[i] = A[i-1] + 5;

12.25

Memory Hazard Issue
• Suppose %rsi and %rdi are passed in as arguments to a function,

can we reorder the instructions below?
– No, if %rsi == %rdi we have a data dependency in memory

• Data dependencies can occur via memory and are harder for the
compiler to find at compile time forcing it to be conservative

ld 0(%rsi),%edx
addl $5,%edx
st %edx,0(%rsi)

ld 0(%rdi),%eax
addl $1,%eax
st %eax,0(%rdi)

Can we move the 2nd ‘ld’ up to enhance

performance? No…Need to wait for ‘st’ !!

Int./Branch Slot LD/ST Slot

ld 0(%rsi),%edx

ld 0(%rdi),%eax

addl $5,%edx

addl $1,%eax st %edx,0(%rsi)

st %eax,0(%rdi)

Can we reorder

these

instructions?

12.26

Memory Disambiguation

• Data dependencies occur in MEMORY and not just registers

• Memory RAW dependencies are also made harder because of different ways
of addressing the same memory location

– Can the following be reordered?

– st %eax, 4(%rdi)
ld -12(%rsi), %ecx

– No! What if %rsi = %rdi + 16

• Memory disambiguation refers to the process of determining if a sequence of
stores and loads reference the same address (ordering often needs to be
maintained)

• We can only reorder LD and ST instructions if we can disambiguate their
addresses to determine any RAW, WAR, WAW hazards

– LD -> LD is always fine (RAR)

– ST -> LD (RAW), LD -> ST (WAR) or ST -> ST (WAW) hazards that need to be
disambiguated

12.27

Itanium 2 Case Study

• Max 6 instruction issues/clock

• 6 Integer Units, 4 Memory units, 3 Branch, 2 FP

– Although full utilization is rare

• Registers

– (128) 64-bit GPR’s

– (128) FPR’s

• On-chip L3 cache (12 MB or cache memory)

12.28

Static Multiple Issue Summary

• Compiler is in charge of reordering, renaming,
unrolling original program code to achieve better
performance

• Processor is designed to fetch/decode/execute
multiple instructions per cycle in the order
determined by the compiler

• Pros: HW can be simpler and thus faster/smaller

– More cores

– Potentially higher clock rates

• Cons: Requires recompilation

– No support for legacy software

12.29

DYNAMIC MULTIPLE ISSUE
MACHINES

HW-based solutions

12.30

Overcoming the Memory Latency

• What happens to instruction execution if we have a cache
miss?
– All instructions behind us need to stall!

– Could take potentially hundreds of clock cycles to fetch the data

• Can we over come this?

I-Cache

D-Cache

ALU
Reg.

File

(4 Read,

2 Write)

PC

Addr.

Calc.

In
te

g
e

r
S

lo
t

L
D

/S
T

 S
lo

t

I-Cache

D-Cache

ALU

Reg.

File

PC

Addr.

Calc.

In
te

g
e

r
S

lo
t

L
D

/S
T

 S
lo

t

ld 0(%rdi),%rcx

Miss

12.31

Out-Of-Order Execution

• Idea: Have processor find dependencies as instructions are
fetched/decoded and execute independent instructions that come after
stalled instructions

– Known as Out-of-Order Execution or Dynamic Scheduling

– HW will determine the "dependency" graph at runtime and as long as an
instruction isn't waiting for an earlier instruction, let it execute!

%rdi = A
%esi = n = # of iterations
%rdx = s
f1:

ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1: ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

void f1(int* A, int n, int* s)
{ *s += 1;
for(; n != 0; n--, A++)
*A += 5;

}

ld 0(%rdx),%r8

add $1,%r8

st %r8,0(%rdx)

ld 0(%rdi),%r9

add $5,%r9

st %r9,0(%rdi)

True (RAW or

control) dependence

Miss

CACHE MISS

STALL

STALL

independent

independent

independent

12.32

Organization for OoO Execution

I-Cache

Block Diagram Adapted

from Prof. Michel Dubois

(Simplified for CS356)

Register

Status

Table

Integer /

Branch
D-Cache Div Mul

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

Common Data Bus

Issue

Unit

Dispatch

Fetch multiple instructions per

clock cycle in PROGRAM ORDER

(i.e. normal order generated by

the compiler)

Decode & dispatch multiple

instructions per cycle tracking

dependencies on earlier

instructions

Instructions wait in queues

until their respective

functional unit (the

hardware that will compute

their value) is free AND

they have their data

available (from the

instructions they depend

upon).

Results of multiple

instructions can be written

back per cycle. Results

are broadcast to any

instruction waiting for that

result.

Tracks which

instruction is the

latest producer

of a register.

(Helps track the

dependencies)

%rdi = A
%esi = n = # of
iterations
%rdx = s
f1:
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

12.33

Organization for OoO Execution

I-Cache

Register

Status

Table

2:addl $1,[res1]

3:st [res2],0(%rdx)

1:ld 0(%rdx),%r8

Integer /

Branch
D-Cache Div Mul

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

Common Data Bus

Issue

Unit

Dispatch

Instructions wait in queues

until their respective

functional unit (the

hardware that will compute

their value) is free AND

they have their data

available (from the

instructions they depend

upon).

Results of multiple

instructions can be written

back per cycle. Results

are broadcast to any

instruction waiting for that

result.

%rdi = A
%esi = n = # of
iterations
%rdx = s
f1:
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

Miss

Assume we can

dispatch 3 instructions

per cycle

12.34

Organization for OoO Execution

I-Cache

Register

Status

Table

5:addl $5,[res4]

2:addl $1,[res1]

6:st [res5],0(%rdi)

4:ld 0(%rdi),%r9

3:st [res2],0(%rdx)

1:ld 0(%rdx),%r8

Integer /

Branch
D-Cache Div Mul

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

Common Data Bus

Issue

Unit

Dispatch

Instructions wait in queues

until their respective

functional unit (the

hardware that will compute

their value) is free AND

they have their data

available (from the

instructions they depend

upon).

Results of multiple

instructions can be written

back per cycle. Results

are broadcast to any

instruction waiting for that

result.

%rdi = A
%esi = n = # of
iterations
%rdx = s
f1:
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

STALLED

Assume we can

dispatch 3 instructions

per cycle

12.35

Organization for OoO Execution

I-Cache

Register

Status

Table

5:addl $5,[res4]

2:addl $1,[res1]

6:st [res5],0(%rdi)

4:ld 0(%rdi),%r9

3:st [res2],0(%rdx)

1:ld 0(%rdx),%r8

Integer /

Branch
D-Cache Div Mul

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

Common Data Bus

Issue

Unit

Dispatch

Instructions wait in queues

until their respective

functional unit (the

hardware that will compute

their value) is free AND

they have their data

available (from the

instructions they depend

upon).

Results of multiple

instructions can be written

back per cycle. Results

are broadcast to any

instruction waiting for that

result.

%rdi = A
%esi = n = # of
iterations
%rdx = s
f1:
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

STALLED

#4 LD 0(%rdi),%r9 has all its

data and thus can jump

ahead of the other stalled LD

and the ST that is dependent

on that LD. It executes out of

order.

12.36

Organization for OoO Execution

I-Cache

Register

Status

Table

8: add $-1,%esi

7: add $4,%rdi

5:addl $5,[res4]

2:addl $1,[res1]

6:st [res5],0(%rdi)

3:st [res2],0(%rdx)

1:ld 0(%rdx),%r8

Integer /

Branch
D-Cache Div Mul

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

Common Data Bus

Issue

Unit

Dispatch

Instructions wait in queues

until their respective

functional unit (the

hardware that will compute

their value) is free AND

they have their data

available (from the

instructions they depend

upon).

Results of multiple

instructions can be written

back per cycle. Results

are broadcast to any

instruction waiting for that

result.

%rdi = A
%esi = n = # of
iterations
%rdx = s
f1:
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

STALLED

Once the #4 LD reads from

cache (assume cache hit) it

will broadcast its value and

the dependent #5 ADD will

pick it up and be able to

execute.

Meanwhile, the next

instructions can be

dispatched

Result of [4: ld 0(%rdi),%r9]

12.37

Organization for OoO Execution

I-Cache

Register

Status

Table

2:addl $1,[res1]

6:st [res5],0(%rdi)

3:st [res2],0(%rdx)

1:ld 0(%rdx),%r8

Integer /

Branch
D-Cache Div Mul

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

Common Data Bus

Issue

Unit

Dispatch

Instructions wait in queues

until their respective

functional unit (the

hardware that will compute

their value) is free AND

they have their data

available (from the

instructions they depend

upon).

Results of multiple

instructions can be written

back per cycle. Results

are broadcast to any

instruction waiting for that

result.

%rdi = A
%esi = n = # of
iterations
%rdx = s
f1:
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

STALLED

Once the #5 ADD computes

its sum it will broadcast its

value and the dependent #6

ST will pick it up and be able

to execute.

Meanwhile other ADDs can

execute and complete.

Result of [7: addl $4,%rdi]

8: add $-1,%esi

7: add $4,%rdi

12.38

Organization for OoO Execution

I-Cache

Register

Status

Table

2:addl $1,[res1]

3:st [res2],0(%rdx)

Integer /

Branch
D-Cache Div Mul

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

Common Data Bus

Issue

Unit

Dispatch

Instructions wait in queues

until their respective

functional unit (the

hardware that will compute

their value) is free AND

they have their data

available (from the

instructions they depend

upon).

Results of multiple

instructions can be written

back per cycle. Results

are broadcast to any

instruction waiting for that

result.

%rdi = A
%esi = n = # of
iterations
%rdx = s
f1:
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

MISS RESOLVED

When the cache finally

resolves the miss, #1 LD will

broadcast its value and the

dependent #2 ADD will pick

it up and be able to execute.

From there the #3 ST will be

able to execute next.

Result of [1: ld 0(%rdx),%r8]

12.39

Dynamic Multiple Issue

• Burden of scheduling code for parallelism is placed on the HW
and is performed as the program runs (not necessarily at
compile time)
– Compiler can help by moving code, but HW guarantees correct

operation no matter what

• Goal is for HW to determine data dependencies and let
independent instructions execute even if previous instructions
(dependent on something) are stalled
– We call this a form of Out-of-Order Execution

• Primarily used in conjunction with speculation methods but
we’ll start by examining non-speculative methods (i.e. don’t
execute until all previous branches are resolved)

12.40

Problems with OoO Execution

• What if an exception (e.g. page fault) occurs in an earlier instruction AFTER later
instructions have already completed

– OS will save the state of the program and handle the page miss

– When OS resumes it will restart the process at the ST instruction

– The subsequent instructions will execute for a 2nd time. BAD!!!

• I need to fetch and dispatch multiple instructions per cycle but when I hit a
jump/branch I don't know which way to fetch

• Solution: Speculative Execution with ability to "Rollback"

%rdi = A
%esi = n = # of
iterations
%rdx = s
f1:
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne %r8,%esi,L1
next instruc.

Completed

Resume after
STALLING

Page Fault!

Where next

12.41

SPECULATIVE EXECUTION

12.42

Speculation w/ Dynamic Scheduling

• Basic block size of 5-7 instructions between
branches limits ability to issue/execute
instructions

– For safety, we might consider stalling (stop
dispatching instructions) until we know the
outcome of a jump/branch

• But speculation allows us to predict a branch
outcome and continue issuing and executing
down that path

• Of course, we could be wrong so we need the
ability to roll-back the instructions we should
not have executed if we mispredict

• We add a structure known as the commit unit
(or re-order buffer / ROB)

B
a
s

ic
 B

lo
c

k

ld 0(%r8),%r9
and %r10,%r11

L1: add %r8,%r12
or %r11,%r13
sub %r14,%r10
jeq %r12,%r14,L1
xor %r10,%r15

STALL until
we know
outcome

Cache Miss

12.43

Out-Of-Order Diagram

In-Order
Issue Logic

(> 1 instruc.

per clock)

INT

MUL/DIV

INT

ALU

FP

ADD

FP

MUL/DIV

Load/

Store
C

o
m

m
it

 U
n

it

Out-of-Order

In-Order

Results forwarded to

dependent (RAW) instructions

Writeback
(to D$ or

registers)

Re-Order Buffer

(ROB)

Temporarily buffers

results of instructions

until earlier instructions

complete and writeback

IN ORDER

Queues for

functional

units

Completed instructions waiting

to complete in-order

Instruc. i+n = newest

Instruc. i = oldest

Front End

Back End

12.44

Commit Unit (ROB)

• ROB tail entry is allocated for each instruction on issue
(ensuring instruction entries are maintained in
program order)

• When an instruction completes, its results are
forwarded to others but is also stored in the ROB
(rather than writing back to reg. file) until it reaches
the head of the ROB

• Commit unit only commits the instruction(s) at the
head of the queue and only when it is fully completed

– Ensures that everything committed was correct

– If we hit an exception or misspeculate/mispredict a
branch then throw away everyone behind it in the ROB
and start fresh using the correct outcome

C
o

m
m

it
 U

n
it

ST
JEQ

XOR / ADD ????

LD
AND
ADD
SUB

Writeback
(to D$ or

registers)

Re-Order Buffer

(ROB)

Tail

Head

(Orange): Executed

instrucs. and

waiting to write back

(Gray): Stalled or

not yet executed

ld 0(%r8),%r9
and %r9,%r11

L1: add %r8,%r12
sub %r8,%r10
st %r9,0(%r13)
jeq %r9,%r14,L1
xor %r10,%r15

12.45

Commit Unit (ROB)

• What happens if the ST instruction
that is STALLED ends up causing a
page fault…
– ROB allows us to throw away instructions

after it and replay them after the page fault
is handled

• When we get to the JEQ, we don't
know %r9 so we'll just guess
(predict) the outcome and fetch
down that predicted path
– If we mispredict, ROB allows us to throw

away instruction results

C
o

m
m

it
 U

n
it

ST
JEQ

XOR / ADD ????

LD
AND
ADD
SUB

Writeback
(to D$ or

registers)

Re-Order Buffer

(ROB)

Tail

Head

ld 0(%r8),%r9
and %r9,%r11

L1: add %r8,%r12
sub %r8,%r10
st %r9,0(%r13)
jeq %r9,%r14,L1
xor %r10,%r15

Exception!

Mispredicted

12.46

Branch Prediction + Speculation

• To keep the backend fed with enough instructions we
need to predict a branch's outcome and perform
"speculative" execution beyond the predicted
(unresolved) branch

– Roll back mechanism (flush) in case of misprediction

Conditional branches

Basic Block

Head of ROB

Speculative

Execution

Path

NT-path T-path

12.47

Speculation Example

• Predict branches and
execute most likely path

– Simply flush ROB entries
after the mispredicted
branch

– Need good prediction
capabilities to make this
useful

T NT

NTT

ROB Head

(Assume stall)

Spec. Path

C
o

m
m

it
 U

n
it

Time 2b:

Flush ROB/Pipeline of

instructions behind it

C
o

m
m

it
 U

n
it

Time 1: ROB

Red Entries = Predicted

Branches

C
o

m
m

it
 U

n
it

Time 3: ROB

Pipeline begins to fill w/

correct path

C
o

m
m

it
 U

n
it

Time 2a: ROB

Black Entry = Mispredicted

branch

B
a

s
ic

 B
lo

c
k

B
a

s
ic

 B
lo

c
k

B
a
s
ic

 B
lo

c
k

B
a

s
ic

 B
lo

c
k

B
a

s
ic

 B
lo

c
k

Correct

Path

W
ro

n
g

-P
a

th

E
x

e
c

u
ti

o
n

12.48

BONUS MATERIAL
Not responsible for this material

12.49

BRANCH PREDICTION

12.50

Branch Prediction

• Since basic blocks are often small, multiple issue (static
or dynamic) processors may encounter a branch every
1-2 cycles

• We not only need to know the outcome of the branch
but the target of the branch

– Branch target: Branch target buffer (cache)

– Branch outcome: Static (compile-time) or dynamic (run-time
/ HW assisted) prediction techniques

• To keep the pipeline full and make speculation efficient
and not wasteful, the processor needs accurate
predictions

12.51

Branch Target Availability
• Branches perform PC = PC + displacement where displacement is stored as

part of the instruction

• Usually can’t get the target until after the instruction is completely fetched
(displacement is part of instruction)

– May be 2-3 cycles in a deeply pipelined processor
(ex. [I-TLB, I-Cache Lookup, I-Cache Access, Decode]

– If a 4-way superscalar and 3 cycle branch penalty, we throw away 12 instructions
on a misprediction

• Key observation: Branches always branch to same place (target is constant
for each branch)

P
C I-TLB

Access

I-$

Look-

up

P
ip

e
 R

e
g
.

I-$

Access

P
ip

e
 R

e
g
.

Decode

P
ip

e
 R

e
g
.

P
ip

e
 R

e
g
.

Branch instruction still being

fetched

Branch instruction

available here

Branch target (PC+d)

available here

Would like to have branch target

available in 1st stage

12.52

Finding the Branch Target

• Key observation: Jump/branches always branch to same place (target is constant
for each branch)

– The first time we fetch a jump we'll have no idea where it is going to jump to and thus
have to wait several cycles

– But let's save the address where the jump instruction lives AND where it wants to jump
to (i.e. the target)

– Next time the PC gets to the starting address of the jump we can lookup the target
quickly

– Keep all this info in a small "branch target cache/buffer"

00000000004004d6 <sum>:
4004d6: 85 f6 test %esi,%esi
4004d8: 7e 1d jle 4004f7 <sum+0x21>
4004da: 48 89 fa mov %rdi,%rdx
4004dd: 8d 46 ff lea -0x1(%rsi),%eax
4004e0: 48 8d 4c 87 04 lea 0x4(%rdi,%rax,4),%rcx
4004e5: b8 00 00 00 00 mov $0x0,%eax
4004ea: 03 02 add (%rdx),%eax
4004ec: 48 83 c2 04 add $0x4,%rdx
4004f0: 48 39 ca cmp %rcx,%rdx
4004f3: 75 f5 jne 4004ea <sum+0x14>
4004f5: eb 05 jmp 4004fc <sum+0x26>
4004f7: b8 00 00 00 00 mov $0x0,%eax
4004fc: c6 05 36 0b 20 00 01 movb $0x1,0x200b36(%rip)
400503: c3 retq

Jump Instruc. Address Jump Target

0x4004d8 0x4004f7

0x4004f3 0x4004ea

0x4004f5 0x4004fc

12.53

Branch Target Buffer

• Idea: Keep a cache (branch target buffer / BTB) of branch
targets that can be accessed using the PC in the 1st stage
– Cache holds target addresses and is accessed using the PC (address of

instruction)

– First time a branch is executed, cache will miss, and we’ll take the branch
penalty but save its target address in the cache

– Subsequent accesses will hit (until evicted) in the BTB and we can use
that target if we predict the branch is taken.

• Note: BTB is a “fully-associative” cache (search all entries for PC
match)…thus it can’t be very large

P
C I-TLB Access

BTB

Target PC

12.54

Branch Outcome Prediction

• Now that we have predicted the target,
we now need to predict the outcome

• Static prediction

– Have compiler make a fixed guess and put
that as a "hint" in the instruction itself

– Effective for loops

• Dynamic prediction
– Some jumps are data dependent (e.g. if(x < y))

– Keep some "history"/records of each branches
outcomes from the past & use that to predict
the future

– Store that history in a cache

– Questions:

• What history should we use to predict a branch

• How much history should we use/keep to predict
a branch

Loop Body

Loop

Check

“After” Code

T

NT

P
C I-TLB Access

BTB Target PC

(PC+d)

Predictors Outcome

(T/NT)

12.55

Local vs. Global History

• What history should we look at?
– Should we look at just the previous

executions of only the particular branch
we’re currently predicting or at
surrounding branches as well

• Local History: The previous outcomes
of that branch only
– Usually good for loop conditions

• Global History: The previous
outcomes of the last m branches in
time (other previous branches)

do {
i--;
if(x == 2) { … }
if(y == 2) { … }
if(x == y) { … }
// Better: Local or Global

}
while (i > 0);

// Better: Local or Global

12.56

Global (Correlating) Predictor

• Use the outcomes of the last m
branches that were executed to
select a prediction

– Given last m jumps, 2m possible
combinations of outcomes & thus predictions
• When jeq1=NT and jeq2=NT, predict jne = T,

when jeq1=NT and jeq2=T, predict jne = NT,
etc.

– Branch predictor indexed
by concatenating LSB’s
of PC and m-bits of last
m branch outcomes

je ...,L1 (T = 1)
...

je ...,L2 (NT = 0)
...

jne ...,L3 // use history
// of NT,T to
// predict

P
C I-TLB Access

Predictors

H
is

to
ry

m-bits Concatenate

12.57

Tournament Predictor

• Dynamically selects when to
use the global vs. local
predictor

– Accuracy of global vs. local
predictor for a branch may vary
for different branches

– Tournament predictor keeps the
history of both predictors
(global or local) for a branch and
then selects the one that is
currently the most accurate

Tournament

Selector

Local

Prediction

Global

Prediction

Predictor

exhibiting

greatest

accuracy

12.58

Dynamic Scheduling Summary

• You can understand a modern architecture
– https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client)

• Software implications

– Code with a lot of branches will perform worse
than regular code

– Many cache misses will limit the performance

• But compared to a statically scheduled
processor…

https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client)

12.59

Pros/Cons of Static vs. Dynamic

• Static
– HW can be simpler since compiler schedules code

– Compiler can see “deeper” in the code to find parallelism

– Used in many high-performance embedded processors like GPUs, etc.
where code is more regular with high computation demand

• Dynamic
– Allows for performance increase even for legacy software

– Can be better at predicting unpredictable branches

– HW structures do not scale well (ROB, reservation stations, etc.)
beyond small sizes and more waste (time & power)

– Better for unpredictable, general purpose control code

12.60

PHYSICAL VS ARCHITECTURAL
REGISTERS

12.61

Virtual Registers?

• In static scheduling, the compiler
accomplished register renaming by changing
the instruction to use other programmer-
visible GPR’s

• In dynamic scheduling, the HW can "rename"
registers on the fly
– In the code on the left we would want %r9 to be

renamed to %r10, %r11, for each iteration

• Solution: A level of indirection
– Let the register numbers be "virtual" and then

perform translation to a "physical" register

– Every time we write to the same register we are
creating a "new version" of the register…so let's
just allocate a physically different register

%rdi = A
%esi = n = # of
iterations
%rdx = s
f1:
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

Trace of instructions over 3

loop iterations. Each iteration

is independent if we can

rename %r9

12.62

Register Renaming

• Whenever an instruction
produces a new value for
a register, allocate a new
physical register and
update the table
– Mark the old physical

register as "free"

– Mark the newly allocated
register as "used"

• An instruction that wants
to read a register just
uses whatever physical
register the current
mapping table indicates

%r1
%r0
%r2

orig rsi

orig rdi

ld's r9
%rdi
%rsi
%r9
...

Physical Registers

Mapping Table
%r5
%r6
%r7

%r0
%r1
%r2
%r3
%r4

%rdi = A
%esi = n = # of
iterations
%rdx = s
f1:
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

Trace of instructions over 3

loop iterations. Each iteration

is independent if we can

rename %r9

%r1
%r0

%r2 %r3

orig rsi

add's r9

%rdi
%rsi
%r9
...

Physical Registers

Mapping Table
%r5
%r6
%r7

%r0
%r1
%r2
%r3
%r4

%r1 %r4
%r0 %r5
%r6

add's esi

ld's r9

orig rsi

%rdi
%rsi
%r9
...

Physical Registers

Mapping Table
%r5
%r6
%r7

%r0
%r1
%r2
%r3
%r4

orig rdi

ld's r9

orig rdi

ld's r9

add's r9

add's rdi

1
2

3

ld 0(%rdi),%r9

add $5,%r9

add $4,%rdi
add $-1,%esi

…
ld 0(%rdi),%r9

used

used

used

used

used

free

used

free

free

free

free
used

used

used

12.63

Architectural vs. Physical Registers

• Architectural registers = The
(16) x86 registers visible to
the programmer or compiler
– Truly just names ("virtual")

– The mapping table needs 1
entry per architectural register

• Physical registers = A greater
number of actual registers
than architectural registers
that is used as a “pool” for
renaming

• Often a large pool of physical
registers (80-128) to support
large number of instructions
executing at once or waiting
in the commit unit

%r1
%r0
%r2

orig rsi

orig rdi

ld's r9
%rdi
%rsi
%r9
...

Physical Registers

"Architectural

Registers"

%r5
%r6
%r7

%r0
%r1
%r2
%r3
%r4

%rdi = A
%esi = n = # of
iterations
%rdx = s
f1:
ld 0(%rdx),%r8
addl $1,%r8
st %r8,0(%rdx)

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

L1:
ld 0(%rdi),%r9
add $5,%r9
st %r9,0(%rdi)
add $4,%rdi
add $-1,%esi
jne $0,%esi,L1

Trace of instructions over 3

loop iterations. Each iteration

is independent if we can

rename %r9

%r1
%r0

%r2 %r3

orig rsi

add's r9

%rdi
%rsi
%r9
...

Physical Registers

"Architectural

Registers"

%r5
%r6
%r7

%r0
%r1
%r2
%r3
%r4

%r1 %r4
%r0 %r5
%r6

add's esi

ld's r9

orig rsi

%rdi
%rsi
%r9
...

Physical Registers

"Architectural

Registers"

%r5
%r6
%r7

%r0
%r1
%r2
%r3
%r4

orig rdi

ld's r9

orig rdi

ld's r9

add's r9

add's rdi

1
2

3

ld 0(%rdi),%r9

add $5,%r9

add $4,%rdi
add $-1,%esi

…
ld 0(%rdi),%r9

used

used

used

used

used

free

used

free

free

free

free
used

used

used

