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BASIC HW
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Logic Circuits

• Combinational logic
– Performs a specific function (mapping 

of 2n input combinations to desired 
output combinations)

– No internal state or feedback

• Given a set of inputs, we will always 
get the same output after some time 
(propagation) delay

• Sequential logic (Storage devices)
– Registers are the fundamental building 

blocks

• Remembers a set of bits for later use

• Acts like a variable from software

• Controlled by a "clock" signal
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Combinational Logic Gates

• Main Idea: Circuits called "gates" perform 
logic operations to produce desired outputs 
from some digital inputs
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Propagation Delay

• Main Idea:  All digital logic circuits have 
propagation delay

– Time it takes for output to change when inputs 
are changed
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Combinational Logic Functions

• Map input combinations of n-bits to desired 
m-bit output

• Can describe function with a truth table and 
then find its circuit implementation
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ALU’s

• Perform a selected 
operation on two input 
numbers.

– FS[5:0] select the desired 
operation

ALU

A

B

C0

RES

OF

ZF

32

32

32

X[31:0]

Y[31:0]

RES[31:0]

Func
6

FS[5:0]

Func. 
Code

Op. Func. 
Code

Op.

00_0000 A SHL B 10_0000 A+B

00_0010 A SHR B 10_0010 A-B

00_0011 A SAR B … …

… … 10_0100 A AND B

01_1000 A * B 10_0101 A OR B

01_1001 A * B 
(uns.)

10_0110 A XOR B

01_1010 A / B 10_0111 A NOR B

01_1011 A / B 
(uns.)

… …

… … 10_1010 A < B100010

0x00000001

0x80000000

0x7fffffff

CF

1

0

0
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Sequential Devices (Registers)
• Registers capture the D input value when a control 

input (aka the clock signal) transitions from 0->1 (clock 
edge) and stores that value at the Q output until the 
next clock edge

• A register is like a variable in software. It stores a value 
for later use

• We can choose to only clock the register at "certain" 
times when we want the register to capture a new 
value (i.e. when it is the destination of an instruction)

• Key Idea: Registers store data while we operate on 
those values

D

Q

CP
Clock pulse

Data Input

Data Output

(could be 

many bits)

(could be 

many bits)

Block Diagram of 

a Register

t = 0 ns t = 1 ns t = 5 ns t = 7 ns t = 10 ns

Clock pulse
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Some input value changing over time
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The clock 
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edge) here…

…causes q(t) to 

sample and hold 

the current d(t) 

value until 

another clock 

pulse

%rax

ALU sum

add %rbx,%rax add %rcx,%rax

%rax
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Clock Signal

• Alternating high/low voltage 
pulse train

• Controls the ordering and timing 
of operations performed in the 
processor

• 1 cycle is usually measured from 
rising edge to rising edge

• Clock frequency = # of cycles per 
second (e.g. 2.8 GHz = 2.8 * 109

cycles per second)

Processor

Clock Signal

0 (0V)

1 (5V)

1 cycle

2.8 GHz 

= 2.8*109 cycles per second

= 0.357 ns/cycle

Op. 1 Op. 2 Op. 3
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FROM X86 TO RISC
Basic HW organization for a simplified instruction set
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From CISC to RISC

• Complex Instruction Set Computers often 
have instructions that vary widely in how 
much work they perform and how much 
time they take to execute

– Benefit is fewer instructions are needed to 
accomplish a task

• Reduced Instruction Set Computers favor 
instructions that take roughly the same time 
to execute and follow a common sequence 
of steps

– It often requires more instructions to 
describe the overall task (larger code size)

• See example to the right

• RISC makes the hardware design easier so 
let's tweak our x86 instructions to be more 
RISC-like

// CISC instruction
movq 0x40(%rdi, %rsi, 4), %rax

// RISC Equiv. w/ 1 mem. or ALU op. 
// per instruction
mov %rsi, %rbx # use %rbx as a temp.
shl 2, %rbx # %rsi * 4
add %rdi, %rbx # %rdi + (%rsi*4)
add $0x40, %rbx # 0x40 + %rdi + (%rsi*4)
mov (%rbx), %rax # %rax = *%rbx

CISC vs. RISC Equivalents
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A RISC Subset of x86

• Split mov instructions that access memory 
into separate instructions:

– ld = Load/Read from memory

– st = Store/Write to memory

• Limit ld & st instructions to use at most 
indirect w/ displacement

– No ld 0x04(%rdi, %rsi, 4), %rax

• Too much work

– At most ld 0x40(%rdi), %rax or
st %rax, 0x40(%rdi)

• Limit arithmetic & logic instructions to only 
operate on registers

– No add (%rsp), %rax since this implicitly 
accesses (dereferences) memory

– Only add %reg1, %reg2

// CISC instruction
add %rax, (%rsp)

// Equiv. RISC sequence (w/ ld and st)
ld 0(%rsp), %rbx
add  %rax, %rbx
st %rbx, 0(%rsp)

// 3 x86 memory read instructions
mov (%rdi), %rax // 1
mov 0x40(%rdi), %rax // 2
mov 0x40(%rdi,%rsi), %rax // 3

// Equiv. load sequences
ld 0x0(%rdi), %rax // 1
ld 0x40(%rdi), %rax // 2
mov %rsi, %rbx // 3a
add %rdi, %rbx // 3b
ld 0x40(%rbx), %rax // 3c

// 3 x86 memory write instructions
mov %rax, (%rdi)          // 1
mov %rax, 0x40(%rdi)      // 2
mov %rax, 0x40(%rdi,%rsi) // 3

// Equiv. store sequences
st %rax, 0x0(%rdi) // 1
st %rax, 0x40(%rdi) // 2
mov %rsi, %rbx // 3a
add %rdi, %rbx // 3b
st %rax, 0x40(%rbx) // 3c
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Developing a Processor Organization

• Identify which hardware components each instruction type 
would use and in what order: ALU-Type, LD, ST, Jump

ALU-Type

add %rax,%rbx

PC

I-Cache / I-MEM

Addr. Data

D-Cache / D-MEM

Addr. Data

Registers
(%rax, %rbx, 

etc.)

(aka RegFile)

A
L

U

Res.

Zero

LD

ld 8(%rax),%rbx
ST

st %rbx, 8(%rax)
JE 
je label/displacement

Cond. Codes

1.

2.

3.

4.

5.

PC

I-Cache

Registers

ALU

Registers

• Addr. of Instruc

• Fetch Instruc

• Get %rax,%rbx

• Sum %rax+%rbx

• Save result to %rbx

PC

I-Cache

Registers

ALU

D-Cache

• Addr. of Instruc

• Fetch Instruc

• Get %rax

• Sum %rax+8

• Read data

6. Registers

• Save data to %rbx

PC

I-Cache

Registers

ALU

D-Cache

• Addr. of Instruc

• Fetch Instruc

• Get %rax

• Sum %rax+8

• Write %rbx data

PC

I-Cache

Registers

ALU

• Addr. of Instruc

• Fetch Instruc

• Get %rax

• If cond=TRUE,  PC = PC+disp. 
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Processor Block Diagram

I-Cache

D-Cache

ALU
Registers

(aka

RegFile)

Fetch Decode Exec. Mem WB

PC Decode

Instruction 
(Machine Code)

Operands ALU Output 
(Addr. or Result)

Data to write to 
dest. register

Clock Cycle Time = Sum of delay through worst case pathway = 50 ns

10 ns 10 ns 10 ns 10 ns 10 ns

Control Signals
(e.g. ALU operation, 
Read/Write D-Cache, etc.)

Addr Data

Data

ZF OFCF SF
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Processor Execution (add)

I-Cache

D-Cache

ALU
Registers

(aka

RegFile)

Fetch Decode Exec. Mem WB

PC Decode

Instruction 
(Machine Code)

Operands ALU Output 
(Addr. or Result)

Data to write to 
dest. register

Control Signals
(e.g. ALU operation, 
Read/Write D-Cache, etc.)

add %rax,%rdx
[Machine Code: 48 01 c2]

%rax+%rdx

Addr Data

%rdx = %rax+%rdx

%rax

%rdx

ZF OFCF SF
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Processor Execution (load)

I-Cache

D-Cache

ALU
Registers

(aka

RegFile)

Fetch Decode Exec. Mem WB

PC Decode

Instruction 
(Machine Code)

Operands ALU Output 
(Addr. or Result)

Data to write to 
dest. register

Control Signals
(e.g. ALU operation, 
Read/Write D-Cache, etc.)

Addr Data

ld 0x40(%rbx),%rax
[Machine Code: 48 8b 43 40]

addr

%rdx = data

%rbx

data

ZF OFCF SF

0x40
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Processor Execution (store)

I-Cache

D-Cache

ALU
Registers

(aka

RegFile)

Fetch Decode Exec. Mem WB

PC Decode

Instruction 
(Machine Code)

Control Signals
(e.g. ALU operation, 
Read/Write D-Cache, etc.)

Addr Data

Data

st %rax,0x40(%rbx)
[Machine Code: 48 89 43 40]

addr

%rbx

0x40

%rax

ZF OFCF SF
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Processor Execution (branch/jump)

I-Cache

D-Cache

ALU
Registers

(aka

RegFile)

Fetch Decode Exec. Mem WB

PC Decode

Instruction 
(Machine Code)

Control Signals
(e.g. ALU operation, 
Read/Write D-Cache, etc.)

Addr Data

Data

je L1 (disp. = 0x08)
[Machine Code: 74 08]

PC + 0x08

PC

0x08

ZF

1

OF

0

CF

1

SF

0
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PIPELINING
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Example

for(i=0; i < 100; i++)

C[i] = (A[i] + B[i]) / 4;

10 ns per input set = 1000 ns total

Memory
A[i]

B[i]

A:

B:

C:

i

C
n

tr
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Pipelining Example

Stage 1 Stage 2

Clock 0 A[0] + B[0]

Clock 1 A[1] + B[1] (A[0] + B[0]) / 4

Clock 2 A[2] + B[2] (A[1] + B[1]) / 4

Stage 1 Stage 2

for(i=0; i < 100; i++)

C[i] = (A[i] + B[i]) / 4;

Pipelining refers to 

insertion of registers to 

split combinational logic 

into smaller stages that 

can be overlapped in 

time (i.e. create an 

assembly line)
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Need for Registers

• Provides separation between combinational functions
– Without registers, fast signals could “catch-up” to data values in the 

next operation stage

R
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Performing an 

operation yields 

signals with different 

paths and delays

We don’t want signals from two 

different data values mixing.  

Therefore we must  collect and 

synchronize the values from 

the previous operation before 

passing them on to the next

Signal i

Signal j

5 ns

2 ns

CLKCLK



12.23

Processors & Pipelines

• Overlaps execution of multiple instructions

• Natural breakdown into stages

– Fetch, Decode, Execute

• Fetch an instruction, while decoding another, while 
executing another

ExecuteDecodeFetch

CLK 1 CLK 2 CLK 3

Inst 1

Inst 2

Inst 3

Inst 4

CLK 4

ExecuteDecodeFetch

DecodeFetch

Fetch

Fetch Decode Exec.

Inst. 1Clk 1

Clk 2 Inst. 1

Clk 3 Inst. 1

Inst. 2

Inst. 2

Clk 4 Inst. 2

Inst. 3

Inst. 3

Clk 5 Inst. 3

Inst. 4

Inst. 4Inst. 5

Pipelining (Instruction View) Pipelining (Stage View)
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Balancing Pipeline Stages

• Clock period must equal the LONGEST
delay from register to register

• Fig. 1: If total logic delay is 20ns => 50MHz

– Throughput: 1 instruc. / 20 ns

• Fig. 2: Unbalanced stage delays limit the 
clock speed to the slowest stage (worst 
case)

– Throughput: 1 instruc. / 10 ns => 100MHz

• Fig. 3: Better to split into more, balanced 
stages

– Throughput: 1 instruc. / 5 ns => 200MHz

• Fig. 4: Are more stages better

– Ideally: 2x stages => 2x throughput

– Throughput: 1 instruc. / 2.5 ns => 400MHz

– Each register adds extra delay so at some 
point deeper pipelines don't pay off
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Balancing Pipeline Stages

Main Points:

• Latency of any single 
instruction is unaffected

• Throughput and thus 
overall program 
performance can be 
dramatically improved
– Ideally K stage pipeline will 

lead to throughput increase 
by a factor of K

– Reality is splitting stages 
adds some delay and thus 
hits a point of diminishing 
returns

Processor Logic
(Fetch + Decode + Execute)
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(Latency = 20ns, Throughput = 1x)

4 Stage Pipeline
(Latency = 20ns, Throughput = 4x)

8 Stage Pipeline
(Latency = 20ns, Throughput = 8x)
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5-Stage Pipeline
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Pipelining

• Let's see how a sequence of instructions can 
be executed

Instruction

ld 0x8(%rbx), %rax

add %rcx,%rdx

je L1
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Sample Sequence - 1
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Sample Sequence - 2
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Sample Sequence - 3
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Sample Sequence - 4
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Sample Sequence - 5
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Sample Sequence - 6
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Sample Sequence - 7
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HAZARDS
Problems from overlapping instruction execution…
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Hazards

• Hazards prevent parallel or overlapped execution!

• Control Hazards
– Problem: We don't know what instruction to fetch but we need to

– Examples: Jumps (branches) and calls

• Data Hazards / Data Dependencies
– Problem: When a later instruction needs data from a previous 

instruction

– Examples: 
• sub %rdx,%rax

• add %rax,%rcx

• Structural Hazards
– Problem: Due to limited resources, the HW doesn't support overlapping 

a certain sequence of instructions

– Examples: See next slides
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Structural Hazards

• Example structural hazard:  A single cache rather 
than separate instruction & data caches

– Structural hazard any time an instruction needs to perform 
a data access (i.e. ld or st) since we always want to fetch 
a new instruction each clock cycle 

Cache

ALU
Reg.

File

PC

LD

i+3

i+2 i+1

Hazard!
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Data Hazard - 1
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sub %rdx,%raxadd %rax,%rcx
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Data Hazard - 2
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Perform 

%rax+%rcx

using the 

wrong value!

sub %rdx,%raxadd %rax,%rcx

New value for %rax

has not been written 

back yet
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Stalling

• Solution 1: Halt/Stall the ADD instruction in the DECODE stage 
and insert nops into the pipeline until the new value of the 
needed register is present at the cost of lower performance
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sub %rdx,%raxadd %rax,%rcx
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Forwarding

• Solution 2: Create new hardware paths to hand-off (forward) 
the data from the producing instruction in the pipeline to the 
consuming instruction

sub %rdx,%raxadd %rax,%rcx
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Solving Data Hazards

• Key Point:  Data dependencies (i.e. instructions 
needing values produced by earlier ones) limit 
performance 

• Forwarding solves many of the data hazards (data 
dependencies) that exist

– It allows instructions to continue to flow through the 
pipeline without the need to stall and waste time

– The cost is additional hardware and added complexity 

• Even forwarding cannot solve all the issues

– A structural hazard still exists when a LD reads a value 
needed by the next instruction
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LD + Dependent Instruction Hazard

• Even forwarding cannot prevent the need to stall when a Load instruction 
produces a value needed by the instruction behind it

– Would require performing 2 cycles worth of work in only a single cycle

ld 8(%rdx),%raxadd %rax,%rcx
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LD + Dependent Instruction Hazard

• We would need to introduce 1 stall cycle (nop) into the 
pipeline to get the timing correct

• Keep this in mind as we move through the next slides
ld 8(%rdx),%raxadd %rax,%rcx
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Control Hazards

• Branches/Jumps require us to know

– Where we want to jump to (aka branch/jump target 
location)…really just the new value of the PC

– If we should branch or not (checking the jump condition)

• Problem: We often don't know those values until 
deep in the pipeline and thus we are not sure what 
instructions should be fetched in the interim

– Requires us to flush unwanted instructions and waste time
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Control Hazard - 1
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Control Hazard - 2
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A FIRST LOOK: CODE REORDERING
Enlisting the help of the compiler
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Two Sides of the Coin

• If the hardware has some problems it 
just can't solve, can software (i.e. the 
compiler) help?
– Yes!!

• Compilers can re-order instructions to 
take best advantage of the processor 
(pipeline) organization

• Identify the dependencies that will 
incur stalls and slow performance
– Load followed by add

– Jump instructions

void sum(int* data, int n, int x)
{

for(int i=0; i < n; i++){
data[i] += x;

}
}

sum:
mov    $0x0,%ecx

L1:
cmp    %esi,%ecx
jge    L2
ld     0(%rdi), %eax
add    %edx, %eax
st     %eax, 0(%rdi)
add    $4, %rdi
add    $1, %ecx
j      L1

L2:
retq

C code and its assembly 
translation
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How Can the Compiler Help

• Compilers are written with general parsing and 
semantic representation front ends but 
architecture-specific backends that generate 
code optimized for a particular processor

• Q: How could the compiler help improve 
pipelined performance while still maintaining 
the external behavior that the high level code 
indicates

• A: By finding independent instructions and 
reordering the code 

– Could we have moved any other instruction into that 
slot?  No!

sum:
mov    $0x0,%ecx

L1:
cmp    %esi,%ecx
jge    L2
ld     0(%rdi), %eax
stall/nop
add    %edx, %eax
st     %eax, 0(%rdi)
add    $4, %rdi
add    $1, %ecx
j      L1

L2:
retq

C code and its assembly 
translation

sum:
mov    $0x0,%ecx

L1:
cmp    %esi,%ecx
jge    L2
ld     0(%rdi), %eax
add    $1, %ecx
add    %edx, %eax
st     %eax, 0(%rdi)
add    $4, %rdi
j      L1

L2:
retq

Original Code 
(incurring 1 stall cycle)

Updated Code
(w/ Compiler reordering)
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Taken or Not Taken: Branch Behavior

• When a conditional jump/branch is 

– True, we say it is Taken

– False, we say it is Not Taken

• Currently our pipeline will fetch sequentially 
and then potentially flush if the branch is 
taken

– Effectively, our pipeline "predicts" that each 
branch is Not Taken

• The j L1 instruction is always taken and 
thus will incur wasted clock cycles each time 
it is executed

• Most of the time the jge L2 will be not 
taken and perform well

C code and its assembly 
translation

sum:
mov    $0x0,%ecx

L1:
cmp    %esi,%ecx
jge    L2
ld     0(%rdi), %eax
add    $1, %ecx
add    %edx, %eax
st     %eax, 0(%rdi)
add    $4, %rdi
j      L1

L2:
retq

T NT
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Branch Delay Slots

• Problem:  After a jump/branch we fetch instructions 
that we are not sure should be executed 

• Idea:  Find an instruction(s) that should ALWAYS be 
executed (independent of whether branch is taken or 
not), move those instructions to directly after the 
branch, and have HW just let them be executed (not 
flushed) no matter what the branch outcome is 

• Branch delay slot(s) = # of instructions that the HW will 
always execute (not flush) after a jump/branch 
instruction 
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Branch Delay Slot Example

ld 0(%rdi), %rcx
cmp %rcx, %rdx
je NEXT
add  %rbx, %rax
NOT TAKEN CODE
…

NEXT:

TAKEN CODE

ld 0(%rdi), %rcx
add  %rbx, %rax
cmp %rcx, %rdx
je NEXT
delay slot instruc.
NOT TAKEN CODE
…

NEXT:

TAKEN CODE

Assume a single 

instruction delay slot

Move an ALWAYS 

executed instruction 

down into the delay 

slot and let it execute 

no matter what

“Before” Code

ld 0(%rdi), %rcx
add  %rbx, %rax
cmp %rcx, %rdx

Not Taken 

Path Code

je

Taken 

Path Code

“After” Code

T

NT

Delay Slot

Flowchart perspective of the 

delay slot

Delay Slot
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Implementing Branch Delay Slots

• HW will define the number of 
branch delay slots (usually a small 
number…1 or 2)

• Compiler will be responsible for 
arranging instructions to fill the 
delay slots
– Must find instructions that the branch 

does NOT DEPEND on

– If no instructions can be rearranged, 
can always insert 'nop' and just waste 
those cycles

ld 0(%rdi), %rcx
add  %rbx, %rax
cmp %rcx, %rdx
je NEXT
delay slot instruc.

Cannot move ‘ld’ into delay slot 

because je needs the %rcx value 

generated by it

ld 0(%rdi), %rcx
add  %rbx, %rax
cmp %rcx, %rax
je NEXT
delay slot instruc.

If no instruction can be found a 

'nop' can be inserted by the 

compiler
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A Look Ahead: Branch Prediction

• Currently our pipeline assumes Not Taken and 
fetches down the sequential path after a 
jump/branch

• Could we build a pipeline that could predict 
taken? 

– Not yet!  Location to jump to (branch target) not 
known until later stages

• But suppose we could overcome those problems, 
would we even know how to predict the 
outcome of a jump/branch before actually 
looking at the condition codes deeper in the 
pipeline?

• We could allow a static prediction per instruction 
(give a hint with the branch that indicates T or 
NT)

• We could allow dynamic prediction per 
instruction (use its runtime history) 

Loop 

Body

loop 

branch

NT 

Code

Loops

High probability 

of being Taken.  

Prediction can 

be static.T: loop

NT: done

if..else

branch 

NT: elseT: if
If Statements

May exhibit 

data 

dependent 

behavior. 

Prediction may 

need to be 

dynamic.

After Code

T Code
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Demo
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Summary 1

• Pipelining is an effective and important technique to 
improve the throughput of a processor

• Overlapping execution creates hazards which lead to 
stalls or wasted cycles

– Data, Control, Structural

– More hardware can be investigated to attempt to mitigate 
the stalls (e.g. forwarding)

• The compiler can help reorder code to avoid stalls 
and perform useful work (e.g. delay slots)


