
10.1

CS356 Unit 10

Memory Allocation &
Heap Management

10.2

BASIC OS CONCEPTS &
TERMINOLOGY

10.3

User vs. Kernel Mode

• Kernel mode is a special mode of the processor for executing trusted (OS)
code

– Certain features/privileges (such as I/O access) are only allowed to code
running in kernel mode

– OS and other system software should run in kernel mode

• User mode is where user applications are designed to run to limit what
they can do on their own

– Provides protection by forcing them to use the OS for many services

• User vs. kernel mode determined by some bit(s) in some processor control
register

– x86 Architecture uses lower 2-bits in the CS segment register (referred to as
the Current Privilege Level bits [CPL])

– 0=Most privileged (kernel mode) and 3=Least privileged (user mode)
• Levels 1 and 2 may also be used but are not by Linux

10.4

Processes

• Process

– (def 1.) Address Space + Threads
• 1 or more threads

– (def 2.) : Running instance of a program that has
limited rights
• Memory is protected: Address translation (VM) ensures no

access to any other processes' memory

• I/O is protected: Processes execute in user-mode (not
kernel mode) which generally means direct I/O access is
disallowed instead requiring system calls into the kernel

• Kernel is not considered a "process"
– Has access to all resources and much of its code is

invoked under the execution of a user process thread (i.e.
during a system call)

• User process invokes the OS (kernel code) via
system calls (see next slide)

Code
0x00000000

0xffff ffff

Address Spaces

Mapped

I/O

-

Program/Process

1,2,3,…

-

Data

-

Heap

-

Stack

-

0xc0000000

0x10000000

= Thread

10.5

System Calls and Mode Switches

• What causes user to kernel
mode switch?

– An exception: interrupt, error, or
system call

• System Calls: Provide a
controlled method for user
mode applications to call
kernel mode (OS) code

– OS will define all possible system
calls available to user apps.

User
Process

OS
Kernel

OS
Library

Kernel
Code

File
System

syscall syscall

SchedulerVirtual
Memory

Device
Drivers

User
Process

OS
Library

enum
{
/* Projects 2 and later. */
SYS_HALT, /* 0 = Halt the operating system. */
SYS_EXIT, /* 1 = Terminate this process. */
SYS_EXEC, /* 2 = Start another process. */
SYS_WAIT, /* 3 = Wait for a child process */
SYS_CREATE, /* 4 = Create a file. */
SYS_REMOVE, /* 5 = Delete a file. */
SYS_OPEN, /* 6 = Open a file. */
SYS_FILESIZE, /* 7 = Obtain a file's size. */
SYS_READ, /* 8 = Read from a file. */
SYS_WRITE, /* 9 = Write to a file. */
...

};

Syscalls from Pintos OS

10.6

HEAP MANAGEMENT

10.7

Overview

• Heap management is an
important component that
affects program performance

• Need to balance:

– Speed & performance of
allocation/deallocation

– Memory utilization (reduce
wasted areas)

– Ease of usage by the
programmer

Memory / RAM

Code (.text)

0x00400000

-

-

Initialized Data
(.data)

Uninitialized Data
(.bss)

Heap

Memory-mapped
Regions for shared

libraries

User stack

-

-

-
0x80000000

0xfffffffc

0x10000000

CS:APP 9.9.1

10.8

C Dynamic Memory Allocation

• void* malloc(int num_bytes) function in
stdlib.h

– Allocates the number of bytes requested and
returns a pointer to the block of memory

• free(void * ptr) function
– Given the pointer to the (starting location of the)

block of memory, free returns it to the system for re-
use by subsequent malloc calls

• C++ uses the familiar new/delete
int main()
{
int num;
printf("How many students?\n");
scanf("%d", &num);

int *scores = (int*) malloc(num * sizeof(int));
// can now access scores[0] .. scores[num-1];

free(scores); // deallocate
return 0;

}

Memory / RAM

Code (.text)

0x00400000

-

-

Initialized Data
(.data)

Uninitialized Data
(.bss)

Heap

Memory-mapped
Regions for shared

libraries

User stack

...

-

-
0x80000000

0xfffffffc

0x10000000

scores[0]

0x0006de4c
0x0006de48
0x0006de44
0x0006de40

scores[1]

scores[2]

scores[3]

malloc

allocates:

10.9

OS & the Heap
• The OS kernel maintains the brk

pointer

– Virtual address of the top of the heap

– Per process

• brk pointer is updated via a system
call (see Linux example below)
– #include <unistd.h>

– void* sbrk(intptr_t increment);

• Increments the brk pointer (up or down)
and returns the old brk pointer on success

– Newly allocated memory is zero-initialized

• Malloc/new provide the common interface
to use this

Memory / RAM

Code (.text)

0x00400000

-

-

Initialized Data
(.data)

Uninitialized Data
(.bss)

Heap

Memory-mapped
Regions for shared

libraries

User stack

-

-

-
0x80000000

0xfffffffc

0x10000000

brk ptr.

intptr_t is a signed integer type that will match the size of pointers (32- or 64-bits)

10.10

A First Look at Malloc/New (1)
• The C-library implementation will provide

an implementation to manage the heap

• At startup, the C-Library will allocate an
initialize size of the heap via sbrk
– void* heap_init;

– heap_init = sbrk(1 << 20); // 1 MB

Memory / RAM

Code (.text)

0x00400000

-

-

Initialized Data
(.data)

Uninitialized Data
(.bss)

Memory-mapped
Regions for shared

libraries

User stack

-

-

-
0x80000000

0xfffffffc

0x10000000

orig brk

new brk

10.11

A First Look at Malloc/New (2)
• The C-library implementation will provide

an implementation to manage the heap

• At startup, the C-Library will allocate an
initialize size of the heap via sbrk

• Subsequent requests by malloc or new will
give out portions of the heap

• Calls to free or delete will reclaim those
memory areas

• If there is not enough free heap memory to
satisfy a call to malloc/new then the library
will use sbrk to increase the size of the
heap
– When no memory exists, an exception or NULL pointer will

be returned and the program may fail

Memory / RAM

Code (.text)

0x00400000

-

-

Initialized Data
(.data)

Uninitialized Data
(.bss)

Memory-mapped
Regions for shared

libraries

User stack

-

-

-
0x80000000

0xfffffffc

0x10000000

brk

Heap
allocatedfree

allocallocated

free allocated

allocated free

H
e
a

p

10.12

A First Look at Malloc/New (3)
• The C-library implementation will provide

an implementation to manage the heap

• At startup, the C-Library will allocate an
initialize size of the heap via sbrk

• Subsequent requests by malloc or new will
give out portions of the heap

• Calls to free or delete will reclaim those
memory areas

• If there is not enough free heap memory to
satisfy a call to malloc/new then the library
will use sbrk to increase the size of the
heap
– When no memory exists, an exception or NULL pointer will

be returned and the program may fail

Memory / RAM

Code (.text)

0x00400000

-

-

Initialized Data
(.data)

Uninitialized Data
(.bss)

Memory-mapped
Regions for shared

libraries

User stack

-

-

-
0x80000000

0xfffffffc

0x10000000

new brk

Heap
allocatedfree

allocallocated

free allocated

allocated free

H
e
a

p

Heap
old brk

10.13

Allocators and Garbage Collection
• An allocator will manage the free

space of the heap

• Types:

– Explicit Allocator: Requires the
programmer to explicitly free memory
when it is no longer used
• Exemplified by malloc/new in C/C++

– Implicit Allocator: Requires the allocator
to determine when memory can be
reclaimed and freed (i.e. known as
garbage collection)
• Used by Java, Python, etc.

Memory / RAM

Code (.text)

0x00400000

-

-

Initialized Data
(.data)

Uninitialized Data
(.bss)

Memory-mapped
Regions for shared

libraries

User stack

-

-

-
0x80000000

0xfffffffc

0x10000000

Heap
allocatedfree

allocallocated

free allocated

allocated free

H
e
a

p

Heap
brk

10.14

Allocator Requirements

• Arbitrary request sequences:

– No correlation to when allocation and free
requests will be made

• Immediate response required

– Cannot delay a request to optimize allocation
strategy

• Use only the heap

– Any heap management data must exist on the
heap or be scalar (single & not arrays) variables

• Align blocks

– Allocated blocks must be aligned to any type of
data

• Allocated blocks may not be moved or modified

– Once allocated the block cannot be altered by
the allocator until it is freed

Memory / RAM

Code (.text)

0x00400000

-

-

Initialized Data
(.data)

Uninitialized Data
(.bss)

Memory-mapped
Regions for shared

libraries

User stack

-

-

-
0x80000000

0xfffffffc

0x10000000

Heap
allocatedfree

allocallocated

free allocated

allocated free

H
e
a

p

Heap
brk

CS:APP 9.9.3

10.15

Allocator Goals

• Maximize throughput
– Make the allocation and deallocation time fast

• Maximize memory utilization (i.e. don't waste memory)
– Need a way to formally define utilization

• Let Hk be the total size of the heap (both allocated and free) after the k-th request

– Note Hk is montonically nondecreasing (we never shrink the heap)

• Let Pk be the total allocated (aka "payload") memory after the k-th request

• Define peak utilization as:

𝑈𝑘 =
𝑚𝑎𝑥𝑖≤𝑘𝑃𝑖

𝐻𝑘

• These goals can be at odds with one another
– Consider the allocation strategy of always allocating

memory from the current top of the heap, never
reusing freed memory. Fast!

– Tension between speed and planning for the future

Hk

Pk

k (~time)

10.16

Fragmentation

• The enemy of high utilization is fragmentation

• Two kinds
– External: Many small fragments of free space between allocated

blocks

– Internal: When payload of is smaller than the block size allocated

• Often used when fixed size "chunks" are allocated

• Notice: There may be enough total free memory for a request
but not contiguous free memory

allocated free

External Fragmentation

allocated allocated

Internal Fragmentation

CS:APP 9.9.4

10.17

Implementation Issues

• Free block management

– Tracking free areas on the heap

• Placement Algorithm

– First-fit, next-fit, best-fit, buddy-system, …

• Splitting/Coalescing

– What overhead info do we keep when we split a
block or need to coalesce (combine contiguous
free) blocks

allocated free free

CS:APP 9.9.5

10.18

Free Block Management

• Allocated blocks are the
programmer's to manage
and need not be tracked
explicitly

• We must manage free lists
to make new allocations

• Implicit free lists:

– Scan through both
allocated and free blocks to
find an appropriate free
block to allocate

• Explicit free lists:

– Maintain explicit list of free
blocks with each storing
information to find the
next (other) free block(s)

allocated free free

Padding/Footer

Payload

Block Size 00a

pointer

returned from
malloc()

Header allocated (1)
or free (0)

heap_start

allocated free free

heap_start

free_list

free

Implicit Free List

Explicit Free List

10.19

Implicit Free List Implementation

• A block must be aligned to largest type (double or
pointer type) which is an 8-byte boundary for 64-bit
systems

– Book uses "word" to refer to an int size chunk (i.e. 4-bytes);
thus "double word" refers to an 8-byte chunk

• Use headers so we can traverse the list to find free
blocks

16
(1=A)

24
(0=F)

Un-
used

Heap start
8-byte aligned

16
(1=A)

Pad-
ding

0
(1=A)

Pad-
ding

1
word

An Initial Implementation

of an Implicit Free list Padding/Footer

Payload

Block Size 00a

pointer

returned from
malloc()

Header allocated (1)
or free (0)

8
(1=A)

CS:APP 9.9.6

10.20

Coalescing

• How would we coalesce the free blocks when the 12-
byte chunk at the end is freed?
– Nothing in the block being freed would help us find the previous block to

see if we should coalesce the two?

– Would need to scan from the beginning…O(n)

– Could consider alternate organizations beyond just a linear list but there
is still cost associated with finding the previous block

– Instead, consider storing additional data to help find the previous block

16
(1=A)

24
(0=F)

Un-
used

Heap start
8-byte aligned

16
(1=A)

Pad-
ding

0
(1=A)

Pad-
ding

An Initial Implementation of an Implicit Free list

free()ptr

CS:APP 9.9.10

10.21

Coalescing w/ Boundary Tags

• Store a footer (boundary tag) on each block that is really a copy
of the header and indicates the size of the block
– Each footer is always just before a header

– When a block is freed, we can look at the footer before the header to determine
if we should coalesce and where the previous header is

• Allows constant time O(1) coalescing (free) operation

16
(1=A)

24
(0=F)

Un-
used

Heap start
8-byte aligned

24
(1=A)

16
(1=A)

Pad-
ding

24
(0=F)

List with Boundary Tags

free()

24
(1=A)

0
(1=A)

16
(1=A)

24
(0=F)

Un-
used

16
(1=A)

Pad-
ding

0
(1=A)

Pad-
ding

Original List

free()

ptr

ptr

10.22

Coalescing Example
• When we free the block given by ptr we would:

1. Start with the address provided by free

2. Walk one word back to find the header (and size) of this block

3. Walk another word back to find the footer (boundary tag) of the previous block from which
we can determine if the block is free and needs to be coalesced

4. Walk to the header of the previous block (&footer_block – (footer_size - 4))

5. Update the size to be the sum of the two blocks and update the footer as well

16
(1=A)

24
(0=F)

Un-
used

Heap start
8-byte aligned

24
(1=A)

16
(1=A)

Pad-
ding

24
(0=F)

Free List

free()

24
(1=A)

0
(1=A)

1

234

16
(1=A)

48
(0=F)

Un-
used

16
(1=A)

Updated Free List

48
(0=F)

0
(1=A)

5 5

ptr

10.23

When To Coalesce

• We can coalesce:

– Immediately when we free the block
• Generally easier to implement

– At some deferred time when we scan through and
coalesce any contiguous free blocks
• Likely when we can't find a large enough free block

• May prevent wasted coalescing (thrashing)

16
(1=A)

24
(0=F)

Un-
used

16
(1=A)

16
(1=A)

16
(1=A)

0
(1=A)

24
(0=F)

Free operation

free

40
(0=F)

Un-
used

16
(1=A)

16
(1=A)

0
(1=A)

40
(0=F)

After coalescing

malloc(8)

(Back to original

situation; coalescing was

unneeded)

16
(1=A)

24
(0=F)

Un-
used

16
(1=A)

16
(1=A)

16
(1=A)

0
(1=A)

24
(0=F)

10.24

Coalescing Cases

• If we coalesce
immediately then
only 4 cases need
be considered to
ensure the list
remains in an
appropriate state

16
(1=A)

24
(0=F)

8
(0=F)

16
(1=A)

16
(1=A)

24
(0=F)

8
(1=A)

16
(1=A)

40
(0=F)

8
(1=A)

16
(1=A)

24
(1=A)

8
(0=F)

16
(1=A)

24
(1=A)

24
(0=F)

16
(1=A)

24
(1=A)

24
(1=A)

16
(1=A)

16
(0=F)

24
(1=A)

24
(1=A)

16
(0=F)

8
(0=F)

48
(0=F)

8
(1=A)

8
(1=A)

8
(0=F)

24
(0=F)

8
(1=A)

8
(1=A)

Free-Free

Coalesce with both

neighbors using

total size of all 3

Block to FreePrev = Free Next = Free

Prev = Alloc Next = Free

Prev = Free Next = Alloc

Prev = Alloc Next = Alloc

Alloc-Free

Coalesce with free

neighbor using

total size of the

two

Free-Alloc

Coalesce with free

neighbor using

total size of the

two

Alloc-Alloc

No coalescing

10.25

Placement Algorithms

• First Fit: Scan from the start
of the heap on each request
and use the first free block
that is large enough

• Next Fit: Scan starting from
where the last allocation
was made

• Best Fit: Find the smallest
free block that is large
enough for the request

alloc(4)

alloc(2)

First Fit

alloc(4)

alloc(2)

Next Fit

alloc(4)

alloc(2)

Best Fit

CS:APP 9.9.7

10.26

EXPLICIT FREE LISTS

10.27

Explicit Free Lists

• When a block is free we can
use some portion of the block
to store explicit pointers to
"other" free blocks

– Could use a simple doubly-
linked list or some other data
structure

• Increases minimum size block
(and potential internal
fragmentation for small
allocations)

• We can return the blocks in
"any" order (more on the next
slide)

allocated free free

Padding/Footer

Payload

Block Size 001

pointer

returned from
malloc()

Header allocated (1)
or free (0)

heap_start

Block Size 000

Prev. Free Blk

Next Free Blk

Empty

free_list

Block Size 000

Prev. Free Blk

Next Free Blk

Empty

Padding/Footer Padding/Footer

CS:APP 9.9.13

10.28

Explicit Free Lists

• Freed blocks can be placed at the front of the list
(and coalescing can be immediate or deferred)

heap_start

alloca
ted1

free
4

allocated
2

SIZE4

Prev. Free Blk

Next Free Blk

...

free_list

free
1

free
4

allocated
2

SIZE1

Prev. Free Blk

Next Free Blk

...

free_list SIZE4

Prev. Free Blk

Next Free Blk

...

allocated
3

allocated
3

free
1

free
4

allocated
2

SIZE3+4

Prev. Free Blk

Next Free Blk

...

free_list SIZE1

Prev. Free Blk

Next Free Blk

...

free
3

Padding/Footer Padding/Footer

Padding/Footer

Padding/Footer Padding/Footer

If coalescing is

deferred, we

can have 3 free

blocks in the

list in the order:

3, 1, 4

10.29

Segregated Free Lists

• Idea:

– Keep separate free lists based on size of the free
block

– Based on the request, pick the appropriate list

• Variations:

– Segregated Storage

– Segregated Fit

CS:APP 9.9.14

10.30

Segregated Storage

• One (common) implementation:

– Maintain lists for fixed size chunks

– Based on request, allocate smallest fixed size
chunk that is free

• Fixed sized blocks allow:

– No header size or allocated/free flag

– No coalescing (thus no footer and only singly-
linked list)

• Allows small minimum block size

• If no free blocks in a specific list, allocate more
heap space and break it into that size chunks

• Suffers from

– Internal fragmentation (due to fixed size)

– Can degenerate to pathological case in some
circumstances (ascending order of requests)

free16

struct free16
{
struct free16* next;
char padding[8];

};

union block16
{
struct free16 empty;
char payload[16];

};

union block16* free16;
...

free32

free4k

...

10.31

Segregated Storage Example
16
-1

free16
16
-2

16
-3

16
-4

32-1free32 32-2 32-3 32-4

ptr1 = alloc(10)

ptr2 = alloc(20)

ptr3 = alloc(12)

free16
16
-2

16
-3

16
-4

32-1free32 32-2 32-3 32-4

free16
16
-2

16
-3

16
-4

free32 32-2 32-3 32-4

free(ptr3);

free16
16
-3

16
-4

free32 32-2 32-3 32-4

free16
16
-2

16
-4

32-2free32 32-3 32-4

16
-1

16
-2

32-1

ptr4 = alloc(8) free16
16
-4

free32 32-2 32-3 32-416
-3

ptr5 = alloc(16) free16
16
-4

32-2free32 32-3 32-4
16
-2

10.32

Segregated Fit

• Separate lists for various size free
chunks
– Chunks in list size N are at least size N

but no more than the lower limit of
the next list size

• On allocation, split a chunk of
appropriate size and put the
fragment back in the appropriate
list (based on its size)

• If no free chunk of desired size,
keep moving up to larger sized lists
– If largest list size has no free chunks

allocated more heap spaces

• Can coalesce upon freeing a block

free16

free32

free4k

...

free4k(1) -> 1 MB

At start only largest size may exist

10.33

Segregated Fit

free8

free4k

...

free(4) -> 32KB

allocated
free
(1)

(2) (3)
free
(4)

(2)
8b

free16

free32

free64

free8

free4k

...

free(4) -> 32KB

(2)
8b

free16

free32

free6456b

free
24b

(5)

ptr1 = alloc(56)

(3)
16b

(3)
16b

(1)
80b

10.34

GARBAGE COLLECTION

10.35

Managed Pointers

• Reference count how many items are pointing at the
object and deallocate it when the count reaches 0

– Some languages will perform this automatically, behind
the scenes (i.e. Python)

shared_ptr p1

ControlObjPtr

ControlObj

RefCnt: 3

Pointer
Actual

Object

shared_ptr p2

ControlObjPtr

shared_ptr p3

ControlObjPtr

CS:APP 9.10

10.36

Managed Pointers (2)

• When the last managed pointer dies or
changes to point at another object, the
reference count will be decremented to 0 and
trigger deallocation

shared_ptr p1

ControlObjPtr

ControlObj

RefCnt: 1

Pointer
Actual

Object

ControlObj

RefCnt: 0

Pointer
Actual

Object

10.37

Implicit Garbage Collection

• Can potentially perform an exhaustive search of allocated
blocks (and the stack and globals) to see if any word (dword)
is a pointer to another piece of memory in an allocated block

• Any allocated block that is not reachable through some
pointer can be garbage collected and marked free

• Requires some intricate book keeping and can be expensive to
compute

allocated
free
(1)

(2) garbage? (3)
free
(4)

allocated
free
(1)

free
(2)

free
(4)

10.38

Allocation Worksheet

• Consider an 80-byte heap starting at address 0
with the use of implicit free lists with
boundary tags.

• Given the sequence of allocations and frees
update the state of the heap.

Op Return 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Start (t=0) 4,1 72,0 72,0 4,1

1/A(8) Ret. 8 4,1 16,1 16,1 4,1

2/A(18) Ret. 24 4,1 32,1 Pad 32,1 4,1

3/A(12) Ret. 56 4,1 24,1 Pad 24,1 4,1

F(8) 4,1 16,0 16,0 4,1

4/A(10) Ret. 0 4,1 4,1

F(24) 4,1 48,0 48,0 4,1

5/A(10) Ret. 8 4,1 24,1 Pad 24,1 24,0 24,0 4,1

6/A(4) Ret. 32 4,1 16,1 Pad 16,1 8,0 8,0 4,1

F(8) 4,1 24,0 24,0 4,1

F(56) 4,1 32,0 32,0 4,1

F(32) 4,1 72,0 72,0 4,1

