
0.1

CS 356 Unit 0

Class Introduction

Basic Hardware Organization

0.2

What is This Course About?

• Introduction to Computer Systems 

– a.k.a. Computer Organization or Architecture

• Filling in the "systems" details

– How is software generated (compilers, libraries) and 

executed (OS, etc.)

– How does computer hardware work and how does it execute 

the software I write?

• Lays a foundation for future CS courses

– CS 350 (Operating Systems), ITP/CS 439 (Compilers), CS 

353/EE 450 (Networks), EE 457 (Computer Architecture)

0.3

Today's Digital Environment

Voltage / Currents

Transistors / Circuits

Digital Logic

Processor / Memory / 

GPU / FPGAs

Assembly / 

Machine Code

OS /

Libraries

C++ / Java / 

Python
Algorithms

Voltage / Currents

Transistors / Circuits

Digital Logic

Processor / Memory / 

GPU / FPGAs

Assembly / 

Machine Code

OS /

Libraries

C++ / Java / 

Python
Algorithms

Networks

Applications

Our Focus in CS 356

0.4

Why is System Knowledge Important?

• Increase productivity 

– Debugging

– Build/compilation

• High-level language abstractions break down 

at certain points

• Improve performance

– Take advantage of hardware features

– Avoid pitfalls presented by the hardware

• Basis of understanding security and exploits



0.5

What Will You Learn

• Binary representation systems

• Assembly

• Processor organization

• Memory subsystems (caching, virtual 

memory)

• Compiler optimization and linking

0.6

Syllabus

0.7

20-Second Timeout

• Who Am I?

– Teaching faculty in EE and CS

– Undergrad at USC in CECS

– Grad at USC in EE

– Work(ed) at Raytheon

– Learning Spanish (and Chinese?)

– Sports enthusiast!

• Basketball

• Baseball

• Ultimate Frisbee?

0.8

ABSTRACTIONS & REALITY



0.9

Abstraction vs. Reality

• Abstraction is good until reality intervenes

– Bugs can result

– It is important to underlying HW implementations

– Sometimes abstractions don't provide the control 

or performance you need

0.10

Reality 1

• ints are not integers and floats aren't reals

• Is x2 >= 0 ?

– Floats: Yes

– Ints: Not always

• 40,000*40,000 = 1,600,000,000

• 50,000*50,000 = -1,794,967,296

• Is (x+y)+z = x+(y+z)?

– Ints: Yes

– Floats: Not always

• (1e20 + -1e20) + 3.14 = 3.14

• 1e20 + (-1e20 + 3.14) = around 0

0.11

Reality 2

• Knowing some assembly is critical

• You'll probably never write much (any?) code in 

assembly as compilers are often better than even 

humans at optimizing code

• But knowing assembly is critical when

– Tracking down some bugs

– Taking advantage of certain HW features that a compiler may 

not be able to use

– Implementing system software (OS/compilers/libraries)

– Understanding security and vulnerabilities

0.12

Reality 3

• Memory matters!

– Memory is not infinite

– Memory can impact performance more than 

computation for many applications

– Source of many bugs both for single-threaded and 

especially parallel programs

– Source of many security vulnerabilities



0.13

Reality 4

• There's more to performance than asymptotic 

complexity

– Constant factors matter!

– Even operation counts do not predict performance

• How long an instruction takes to execute is not 

deterministic…it depends on what other instructions 

have been execute before it

– Understanding how to optimize for the processor 

organization and memory can lead to up to an 

order of magnitude performance increase

0.14

COMPUTER ORGANIZATION AND 

ARCHITECTURE

Drivers and Trends

0.15

Computer Components

• Processor

– Executes the program and 
performs all the operations

• Main Memory

– Stores data and program
(instructions)

– Different forms: 

• RAM = read and write but 
volatile (lose values when power 
off)

• ROM = read-only but non-volatile 
(maintains values when power 
off)

– Significantly slower than the 
processor speeds

• Input / Output Devices

– Generate and consume data from 
the system

– MUCH, MUCH slower than the 
processor

Arithmetic + 
Logic + 
Control 
Circuitry

Program
(Instructions)

Data
(Operands)

Output 

Devices

Input 

Devices

Data

Software 
Program

Memory (RAM)

Processor

Combine 2c. Flour

Mix in 3 eggs
Instructions

Data
Processor

(Reads instructions, 
operates on data)

Disk Drive

0.16

Architecture Issues

• Fundamentally, computer architecture is all about the 

different ways of answering the question:

“What do we do with the ever-increasing number of 

transistors available to us”

• Goal of a computer architect is to take increasing 

transistor budgets of a chip (i.e. Moore’s Law) and 

produce an equivalent increase in computational 

ability



0.17

Moore’s Law, Computer Architecture & Real-

Estate Planning

• Moore’s Law = Number of 

transistors able to be 

fabricated on a chip grows 

exponentially with time

• Computer architects decide, 

“What should we do with all 

of this capability?”

• Similarly real-estate 

developers ask, “How do we 

make best use of the land 

area given to us?”
USC University Park Development Master Plan

http://re.usc.edu/docs/University%20Park%20Development%20Project.pdf

0.18

Transistor Physics

• Cross-section of transistors 

on an IC

• Moore’s Law is founded on 

our ability to keep 

shrinking transistor sizes 

– Gate/channel width shrinks

– Gate oxide shrinks

• Transistor feature size is 

referred to as the 

implementation 

“technology node”

0.19

Technology Nodes

0.20

Growth of Transistors on Chip

1

10

100

1,000

10,000

100,000

1,000,000

1975 1980 1985 1990 1995 2000 2005 2010

T
ra

n
is

to
r 

C
o

u
n

t 
(T

h
o

u
s
a
n

d
s
)

Year

Intel '486
(1.2M)

Pentium
(3.1M)

Pentium  Pro
(5.5M)

Pentium  3
(28M) Pentium  4 

Northwood
(42M)

Pentium  2
(7M)

Intel '386
(275K)

Intel '286
(134K)

Intel 8086
(29K)

Pentium  4 
Prescott
(125M)

Pentium  D
(230M)

Core 2 Duo
(291M)



0.21

Implications of Moore’s Law

• What should we do with all these transistors

– Put additional simple cores on a chip

– Use transistors to make cores execute instructions 

faster

– Use transistors for more on-chip cache memory

• Cache is an on-chip memory used to store data the 

processor is likely to need

• Faster than main-memory (RAM) which is on a separate 

chip and much larger (thus slower)

0.22

Memory Wall Problem

• Processor performance is increasing much faster than memory 

performance

Processor-Memory 

Performance Gap

7%/year

55%/year

Hennessy and Patterson, 

Computer Architecture –

A Quantitative Approach (2003)

0.23

RAM

Processor

Cache Example

• Small, fast, on-chip memory to 
store copies of recently-used 
data

• When processor attempts to 
access data it will check the 
cache first

– If the cache has the desired 
data, it can supply it quickly

– If the cache does not have the 
data, it must go to the main 
memory (RAM) to access it

System Bus 

RAM

Cache

Processor

Cache

Cache has 
desired 

data

Cache does 
not have  
desired 

data
System Bus 

0.24

Pentium 4

L2 Cache

L1 Data

L1 Instruc.



0.25

Increase in Clock Frequency

1

10

100

1000

10000

1975 1980 1985 1990 1995 2000 2005 2010

F
re

q
u

e
n

c
y
 (

M
H

z
)

Year

Intel '486
(25)

Pentium
(60)

Pentium  Pro
(200)

Pentium  3
(700)

Pentium  4 
Willamette 

(1500)

Pentium  2
(266)

Intel '386
(20)

Intel '286
(12.5)

Intel 8086
(8)

Pentium  4 
Prescott 
(3600)

Pentium  D 
(2800)

Core 2 Duo
(2400)

0.26

Intel Nehalem Quad Core

0.27

Progression to Parallel Systems

• If power begins to limit clock frequency, how can we 

continue to achieve more and more operations per 

second?

– By running several processor cores in parallel at lower 

frequencies

– Two cores @ 2 GHz vs. 1 core @ 4 GHz yield the same 

theoretical maximum ops./sec.

• For various applications like graphics and 

computationally intensive workloads this is taken to 

an extreme by GPUs

0.28

GPU Chip Layout

• 2560 Small 

Cores

• Upwards of 

7.2 billion 

transistors

• 8.2 TFLOPS

• 320 

Gbytes/sec

Photo: http://www.theregister.co.uk/2010/01/19/nvidia_gf100/

Source: NVIDIA



0.29

Intel Haswell Quad Core


