
P1.1

CS 356 Project 1

Data Lab (Part 1)

P1.2

Overview

• Implement functions for a given task/puzzle

• Basic rules for 'integer' (i.e. non-floating point)
puzzles

– Use only allowed operators
• Generally, allowed: + & | ^ ~ << >>

= (assignment) is always allowed

• Generally, disallowed: - * / % < > ==

– Only integer variables

– Only 8-bit constants (i.e. -128 to +127, 0x00-0xff)

• Utilize your knowledge of integer representation (2's
comp. and unsigned) as well as integer operations

P1.3

Hint: 2's complement Review

• What is the bit pattern of:

– Max 2's comp. number (Tmax)

– Min 2's comp. number (Tmin)

P1.4

Hint: DeMorgan's Theorem

• DeMorgan's Theorem

– ¬(x Ʌ y) = ¬x V ¬y

– ¬(x V y) = ¬x Ʌ ¬y

P1.5

Hint: bitMask

• If we could do binary subtraction, what would
the following yield: 010000 – 000010?

• What about: 100000 – 000100?

P1.6

Hint: Multiplexing

• Multiplexing refers to the process of choosing
1-of-n inputs and passing it to the output
– Which input is chosen depends on the select

– Analogy: Traffic cop

• Equivalent of an if-else statement (or ? : operator)

Y

Thus, input 1

(i.e. X) is

selected and

passed to the

output

Select bit = 11

2

2-to-1 Mux

i0

i1

z

s

X

X
if(cond)
z = x

else
z = y;

z = cond ? x : y;

P1.7

Multiplexing and Logic

• We can replace the 'if' or '? :'
control structure with &, |, and
~ operations

• Use bitwise logic operations
(ANDs and ORs to pass the
appropriate value

– Z = (¬S Ʌ In-0) V (S Ʌ In-1)

– Analyze the above equation:

When S=0: Z = (1 Ʌ In-0) V 0 = In-0

When S=1: Z = 0 V (1 Ʌ In-1) = In-1
Truth Table of a mux

Let S = Cond, In-1 = X, In-0 = Y

if(cond)
z = x

else
z = y;

S
(Cond.)

In-1 In-0 Z

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Identity 0 OR Y = Y 1 AND Y = Y

Null Ops 1 OR Y = 1 0 AND Y = 0

P1.8

Hint: Comparison Via Subtraction

• Suppose we want to compare two signed numbers:
A & B

• Suppose we let DIFF = A-B…what could the result
tell us

– If DIFF < 0, then A < B

– If DIFF = 0, then A=B

– IF DIFF > 0, then A > B

• How would we know DIFF == 0?

– If all bits of our answer are 0…

• How would we know DIFF < 0 (i.e. negative)?

– Check MSB. But what about overflow!!

P1.9

Computing A<B from "Negative" Result

• Recall overflow with signed numbers
flips the sign to the opposite value of
what it should be

• Perform A-B

• If there is no overflow, simply check if
MSB = 1 (it is trustworthy)

• So if there is overflow, check if MSB = 0
(i.e. positive) since that would mean
the result truly should be negative

• Summary: A-B is "truly" negative if:
– overflow & MSB=1 OR

– no overflow & MSB=0

P1.10

Hint: isTMax

• Consider how to solve the alternate problem:
isTMin?

– What is the set of binary numbers that when
added to itself will yield 0?

• Consider the relationship between Tmax and
Tmin

