CS 356 Project 1

Data Lab (Part 1)

Overview

- Implement functions for a given task/puzzle
- Basic rules for 'integer' (i.e. non-floating point) puzzles
- Use only allowed operators
- Generally, allowed: + \& | ^ ~ << >>
$=$ (assignment) is always allowed
- Generally, disallowed: - * / \% < > ==
- Only integer variables
- Only 8-bit constants (i.e. -128 to $+127,0 x 00-0 x f f$)
- Utilize your knowledge of integer representation (2's comp. and unsigned) as well as integer operations

Hint: 2's complement Review

- What is the bit pattern of:
- Max 2's comp. number (Tmax)
- Min 2's comp. number (Tmin)

Hint: DeMorgan's Theorem

- DeMorgan's Theorem

$$
\begin{aligned}
& -\neg(x \wedge y)=\neg x \vee \neg y \\
& -\neg(x \vee y)=\neg x \wedge \neg y
\end{aligned}
$$

Hint: bitMask

- If we could do binary subtraction, what would the following yield: 010000-000010?
- What about: $100000-000100$?

Hint: Multiplexing

- Multiplexing refers to the process of choosing 1 -of-n inputs and passing it to the output
- Which input is chosen depends on the select
- Analogy: Traffic cop
- Equivalent of an if-else statement (or ?:operator) 2-to-1 Mux

Multiplexing and Logic

- We can replace the 'if' or '? :' control structure with $\&, \mid$, and ~ operations
- Use bitwise logic operations (ANDs and ORs to pass the appropriate value

$$
-Z=(-S \wedge \ln -0) \vee(S \wedge \ln -1)
$$

- Analyze the above equation:
When $S=0: Z=(1 \wedge \operatorname{In}-0) \vee 0=\ln -0$
When $S=1: Z=0 \vee(1 \wedge \ln -1)=\ln -1$

Identity	0 OR $Y=Y$	1 AND $Y=Y$
Null Ops	1 OR $Y=1$	0 AND $Y=\mathbf{0}$

$$
\begin{gathered}
\text { if(cond) } \\
z=x \\
\text { else } \\
z=y
\end{gathered}
$$

(Cond.) In-1 In-0 Z 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1

Hint: Comparison Via Subtraction

- Suppose we want to compare two signed numbers: A \& B
- Suppose we let DIFF = A-B...what could the result tell us
- If DIFF <0, then $\mathrm{A}<\mathrm{B}$
- If DIFF $=0$, then $A=B$
- IF DIFF > 0 , then $\mathrm{A}>\mathrm{B}$
- How would we know DIFF ==0
- If all bits of our answer are 0...
- How would we know DIFF < 0 (i.e. negative)?
- Check MSB. But what about overflow!!

Computing A<B from "Negative" Result

- Recall overflow with signed numbers flips the sign to the opposite value of what it should be
- Perform A-B
- If there is no overflow, simply check if $\mathrm{MSB}=1$ (it is trustworthy)
- So if there is overflow, check if MSB $=0$ (i.e. positive) since that would mean
 the result truly should be negative
- Summary: A-B is "truly" negative if:
- overflow \& MSB=1 OR
- no overflow \& MSB=0

Hint: isTMax

- Consider how to solve the alternate problem: isTMin?
- What is the set of binary numbers that when added to itself will yield 0 ?
- Consider the relationship between Tmax and Tmin

