

School of Engineering

CS 356 Project 1

Data Lab (Part 1)

Overview

School of Engineering

- Implement functions for a given task/puzzle
- Basic rules for 'integer' (i.e. non-floating point) puzzles
 - Use only allowed operators
 - Generally, allowed: + & | ^ ~ < << >>
 - = (assignment) is always allowed
 - Generally, disallowed: * / % < > ==
 - Only integer variables
 - Only 8-bit constants (i.e. -128 to +127, 0x00-0xff)
- Utilize your knowledge of integer representation (2's comp. and unsigned) as well as integer operations

Hint: 2's complement Review

• What is the bit pattern of:

Max 2's comp. number (Tmax)

– Min 2's comp. number (Tmin)

School of Engineering

Hint: DeMorgan's Theorem

• DeMorgan's Theorem

$$-\neg(x \land y) = \neg x \lor \neg y$$
$$-\neg(x \lor y) = \neg x \land \neg y$$

Hint: bitMask

 If we could do binary subtraction, what would the following yield: 010000 – 000010?

• What about: 100000 – 000100?

Hint: Multiplexing

- Multiplexing refers to the process of choosing 1-of-n inputs and passing it to the output
 - Which input is chosen depends on the select
 - Analogy: Traffic cop
- Equivalent of an if-else statement (or ?: operator)

School of Engineering

P1.6

Multiplexing and Logic

S

0

0

0

0

1

1

1

1

(Cond.)

- We can replace the 'if' or '? :' control structure with &, |, and ~ operations
- Use bitwise logic operations (ANDs and ORs to pass the appropriate value

 $- Z = (\neg S \land In-0) \lor (S \land In-1)$

Analyze the above equation:

When S=0: $Z = (1 \land In-0) \lor 0 = In-0$

When $S=1: Z = 0 V (1 \land In-1) = In-1$

Identity	0 OR Y = Y	1 AND Y = Y
Null Ops	1 OR Y = 1	0 AND Y = 0

if(cond)
 z = x
else
 z = y;

In-0

0

1

0

1

In-1

0

0

1

1

Let S = Cond, $In-1 = X$, $In-0 = Y$					
Truth Table of a more					
	1	1	1		
	1	0	1		
	0	1	0		
		•	•		

Viterhi (P1.7

Ζ

0

1

0

1

School of Engineering

Hint: Comparison Via Subtraction

- Suppose we want to compare two signed numbers: A & B
- Suppose we let DIFF = A-B...what could the result tell us
 - If DIFF < 0, then A < B
 - If DIFF = 0, then A=B
 - IF DIFF > 0, then A > B
- How would we know DIFF == 0?
 - If all bits of our answer are 0...
- How would we know DIFF < 0 (i.e. negative)?
 - Check MSB. But what about overflow!!

Computing A<B from "Negative" Result

- Recall overflow with signed numbers flips the sign to the **opposite** value of what it should be
- Perform A-B
- If *there is no overflow*, simply check if MSB = 1 (it is trustworthy)
- So if *there is overflow,* check if MSB = 0 (i.e. positive) since that would mean the result truly should be negative
- Summary: A-B is "truly" negative if:
 - overflow & MSB=1 OR
 - no overflow & MSB=0

Overflow occurs when you cross this discontinuity

P1.9

School of Engineering

Hint: isTMax

- Consider how to solve the alternate problem: isTMin?
 - What is the set of binary numbers that when added to itself will yield 0?
- Consider the relationship between Tmax and Tmin