Unit 9

Practice with Loops:
Series/Summations

Series Approximations

 Many interesting real-valued functions or constants
may be approximated as a rational number using a
series summation or product

— ¥ = 1+%+’;—?+x3—?+---

* Series are best generated using loops where each
iteration generates one term and combines it with
the previous terms (by adding or multiplying as
necessary)

- USCViterbi @
Simple Series

 Write a loop to generate the first n int n;
positive, odd numbers i;; > g
— 0Odd numbers: 1,3,5,7,9 for(int i=0; i < n; i++)
* We could use two separate variables d qouts <4 @ikl <& @neils
— An inductive/control variable to count odd += 2;
to n and control how many repetitions)
— Another to produce the odd values Method 1: Generate the first n positive,
* Itis more common to put the desired odd numbers
value in terms of the inductive/control [-

variable cin >> n;
for(int i=0; i < n; i++
* Ifiranges from O to n-1, then the first | ()
n odd numbers are generated by: cout <<« << endl;
*; }
- 2%i+1
* Tip: Write a table of i and the desired
value and try to see if a simply line

(y = mx+b) can fit the data

Method 2: Generate the first n positive,
odd numbers

Practice

* Write a loop to generate and
output this sequence:
- 3,7,11, 15, 19, 23, 27, 31, 35, 39

— Trying doing so using only the
inductive variable

* Write a loop to generate and
output this sequence:
-0,0,1,1,2,2,3,3,4,4

— Trying doing so using only the
inductive variable

for(int i=

{

cout <<

}

<< endl;

for(int i=

{

cout <<

}

<< endl;

i, TS(“Viterbi -

School of Engineering

Another Example: Factorials

* Write a loop to compute n! int n;
. cin >> n;
(factorial) int fact =
for(int i=1; i <= n; i++)
—nl=1%2%-x(n—1)*n = (
n .]
i=1l 5]
}

— Olis defined to just be 1

* We would not want to multiply by O
since any further multiplication would
result in 0 as well

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII[ECVhﬂj<:>

Calculating e*

 Write a loop to generate the first n terms
of the approximation of e*
—ex=1+%+§+§+~-
* Tips:
— Generalize: Look at the pattern and write
out the expression for the i-th term

— Since 0! is a bit strange and just defined to
be 1, pull out the first term and let the
loop calculate the remaining terms

— The first time around you can use the
pow(base, exp) function; then try to see
how you'd do it without using pow()

— Keep a variable for il updating it each
iteration to be ready for the next

School of Engineering

double x, e_x
int n, fact =

cin >> X >> n;
for(int i=

1;

g ;)

{
fact

e_X

}

Attempt 1

double x, e_x
int n, fact =

cin >> x >> n;
for(int i=

1;

5 ;)

{

X_ 1

fact

e X

}

Attempt 2

