
1

Unit 9

Practice with Loops:
Series/Summations

2

Series Approximations

• Many interesting real-valued functions or constants
may be approximated as a rational number using a
series summation or product

– 𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+⋯

• Series are best generated using loops where each
iteration generates one term and combines it with
the previous terms (by adding or multiplying as
necessary)

3

Simple Series

• Write a loop to generate the first n
positive, odd numbers

– Odd numbers: 1,3,5,7,9

• We could use two separate variables

– An inductive/control variable to count
to n and control how many repetitions

– Another to produce the odd values

• It is more common to put the desired
value in terms of the inductive/control
variable

• If i ranges from 0 to n-1, then the first
n odd numbers are generated by:
– 2*i + 1

• Tip: Write a table of i and the desired
value and try to see if a simply line
(y = mx+b) can fit the data

int n;
cin >> n;
int odd = 1;
for(int i=0; i < n; i++)
{

cout << odd << endl;
odd += 2;

}

Method 1: Generate the first n positive,
odd numbers

int n;
cin >> n;
for(int i=0; i < n; i++)
{

cout << _________ << endl;
}

Method 2: Generate the first n positive,
odd numbers

4

Practice

• Write a loop to generate and
output this sequence:

– 3, 7, 11, 15, 19, 23, 27, 31, 35, 39

– Trying doing so using only the
inductive variable

• Write a loop to generate and
output this sequence:

– 0,0,1,1,2,2,3,3,4,4

– Trying doing so using only the
inductive variable

for(int i=___; _________; _____)
{

cout << _________ << endl;

}

for(int i=___; _________; _____)
{

cout << _________ << endl;

}

5

Another Example: Factorials

• Write a loop to compute n!
(factorial)
– 𝑛! = 1 ∗ 2 ∗ ⋯∗ 𝑛 − 1 ∗ 𝑛 =

ς𝑖=1
𝑛 𝑖

– 0! is defined to just be 1
• We would not want to multiply by 0

since any further multiplication would
result in 0 as well

int n;
cin >> n;
int fact = ____;
for(int i=1; i <= n; i++)
{

___________________;
}

6

Calculating ex

• Write a loop to generate the first n terms
of the approximation of ex

– 𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+⋯

• Tips:

– Generalize: Look at the pattern and write
out the expression for the i-th term

– Since 0! is a bit strange and just defined to
be 1, pull out the first term and let the
loop calculate the remaining terms

– The first time around you can use the
pow(base, exp) function; then try to see
how you'd do it without using pow()

– Keep a variable for i! updating it each
iteration to be ready for the next

double x, e_x = ____;
int n, fact = 1;

cin >> x >> n;
for(int i=___; ________; _____)
{

fact _______________;
e_x _______________________;

}

Attempt 1

double x, e_x = ____, x_i = ____;
int n, fact = 1;

cin >> x >> n;
for(int i=___; ________; _____)
{

x_i ______________________
fact _______________;
e_x _______________________;

}

Attempt 2

