
1

Unit 8

'for' Loops

2

Side Topic: Pre-/Post- Increment/Decrement

• Recall the increment and decrement operators: ++ and --
– If ++ comes before a variable it is call pre-increment; if after, it is called post-increment

– x++; // If x was 2 it will be updated to 3 (x = x + 1)

– ++x; // Same as above (no difference when not in a larger expression)

– x--; // If x was 2 it will be updated to 1 (x = x – 1)

– --x; // Same as above (no difference when not in a larger expression)

• Difference between pre- and post- is only evident when used in a larger
expression

• Meaning:
– Pre: Update (inc./dec.) the variable before using it in the expression

– Post: Use the old value of the variable in the expression then update (inc./dec.) it

• Examples [suppose we start each example with: int y; int x = 3;]
– y = x++ + 5; // Post-inc.; Use x=3 in expr. then inc. [y=8, x=4]

– y = ++x + 5; // Pre-inc.; Inc. x=4 first, then use in expr. [y=9, x=4]

– y = x-- + 5; // Post-dec.; Use x=3 in expr. then dec. [y=8, x=2]

– y = --x + 5; // Pre-dec.; Dec. x=2 first, then use in expr. [y=7, x=2]

3

Control Structures

• We need ways of making decisions in our program

– To repeat code until we want it to stop

– To only execute certain code if a condition is true

– To execute one segment of code or another

• Language constructs that allow us to make decisions
are referred to as control structures

• The common ones are:

– if statements

– switch statements

– while loops

– for loops

4

for Loops

• 'for' loops provide additional syntax for initialization and an
update after each iteration

while (condition)
{

// executed if condition is true
} // go to top, eval cond. again

// following statements
// only gets here when cond. is false

condition

while Block
Statements

True

False

Following
statements

condition

For Block
Statements

True

False

Following

init

Update

for(init; condition; update)
{

// executed if condition is true
} // go to top, do update, eval cond. again

// following statements
// only gets here when cond. is false

for(int i=0; i < 5; i++)
{

cout << i << endl;
}

Example

5

'for' Loop Sequencing

• 'for' loop

– performs init
statement once

– checks the condition
each iteration before
deciding to execute the
body or end the loop

– performs the update
statement after each
execution of the body

condition

For Block
Statements

True

Following

init

Update

for(init; condition; update)
{

// executed if condition is true
} // go to top, do update, eval cond. again

// following statements
// only gets here when cond. is false

1
Condition:

3

4

9

T T F
2

6

75 8

False

6

Some Examples
#include <iostream>
using namespace std;
int main()
{

int i;
for(i=0; i < 5; i++)
{

cout << i << endl;
}
return 0;

}

0
1
2
3
4

Program Output:

#include <iostream>
using namespace std;
int main()
{

int i;
for(i=8; i > 0; i=i/2)
{

cout << i << endl;
}
return 0;

}

8
4
2
1

Program Output:

The initial value, condition, and update statement can be any valid expression!

7

Sets and For Loops

• For loops can often be used to
generate or iterate over all the
elements of a set

• For loops will usually utilize some
variable to track/count how many
iterations have elapsed
– This is often known as the inductive

or control variable

• If we want to iterate n times, the
common idiom is to start at 0 and
iterate through n-1, stopping on n
– This is not a requirement; we can

start where we like

int i;
// print first 10 multiples of 3
for(i=1; i <= 10; i++)
{

cout << 3*i << endl;
}
// What is i when the loop ends?

Generate the first 10 multiples of 3:

𝑺 = 𝟑𝒊 | 𝒊 ∈ ℕ, 𝟏 ≤ 𝒊 ≤ 𝟏𝟎

int i;
// print first 20 pos. odd #s
for(i=0; i < 20; i++)
{

cout << 2*i+1 << endl;
}
// What is i when the loop ends?

Generate the first 20 positive odd #s

𝑺 = 𝟐𝒊 + 𝟏 | 𝒊 ∈ ℕ, 𝟎 ≤ 𝒊 ≤ 𝟏𝟗

8

Tangent: Scope

• A tangent that will be relative in
our discussion of for loops is the
idea of scope

• Scope refers to the lifetime and
visibility of a variable
– Recall variables are just memory

slots in the computer

– The program will reclaim those
memory spots when a variable "dies"

• In C/C++, a variable's scope is the
curly braces {} it is declared within

• Main Point: A variable dies at the
end of the {…} it was declared in

#include <iostream>
using namespace std;
int main()
{

int i;
cin >> i;

if(i > 0){
int temp = 2*i;
cout << temp << endl;

} // temp died here
temp = i++; // won't compile
cout << temp << endl;

return 0;
} // i dies here

9

Declaring the Inductive Variable

• The initialization statement can be
used to declare a control/inductive
variable but its scope is considered
to be the for loop (even though it is
not technically declared in the {..}
of the for loop
– Just realize that variable will die at

the end of the loop

• However, because it dies after the
first loop you can use that same
variable name in a subsequent loop

#include <iostream>
using namespace std;
int main()
{

int n;
cin >> n;
for(int i=0; i < n; i++){

cout << 3*i << endl;
} // i dies here

// won't compile
cout << i << endl;

// okay to reuse i
for(int i=0; i < n; i++){

cout << 4*i << endl;
} // reincarnated i dies again

return 0;
} // n dies here

10

Hand Tracing (1)
• For the first program,

trace through the code
and show all changes to i
for:

– n = 2;

• For the second program,
trace through the code
and show the output for:

– t = PI/2, T = 2*PI

int main()
{

int n;
cin >> n;
for(int i = -n; i <= n; i++)
{

cout << i << endl;
}
return 0;

}

int main()
{

double t, T;
cin >> t >> T;
for(double th = 0 ; th < T; th += t)
{

cout << sin(th) << endl;
}
return 0;

}

11

Hand Tracing (2)
• For the first program,

trace through the code
and show all changes to i
and y for:

– x = 10

– y = 2

• For the second program,
trace through the code
and show all changes to i
and y for:

– x = 4

– y = 11

int main()
{

int x, y;
cin >> x >> y;
for(int i=1; i <= x; i=i+y)
{

cout << i << endl;
y++;

}
return 0;

}

int main()
{

int x, y;
cin >> x >> y;
for(; x < y; x++)
{

cout << x << " " << y << endl;
y--;

}
return 0;

}

12

Exercises 1

• Write a for loop to
generate all the
elements of the
specified sets

for(int i=0; i < 8; i++)
{

cout << _________ << endl;
}

𝑺 = 𝟑, 𝟕, 𝟏𝟏, 𝟏𝟓, 𝟏𝟗, 𝟐𝟑, 𝟐𝟕, 𝟑𝟏

for(int i=-5; i <= 5; i++)
{

cout << _________ << endl;
}

𝑻 = 𝟓, 𝟒, 𝟑, 𝟐, 𝟏, 𝟎, 𝟏, 𝟐, 𝟑, 𝟒, 𝟓

13

Exercises 2

• cpp/for/blastoff

• cpp/for/interest

• cpp/for/sum-mult-2-5

• cpp/for/bottles-wall

14

'while' or 'for'

While Loops

• Usually used to repeat code
until some condition is false

For Loops

• Usually used to repeat code
some known amount of
time

• Very useful to access arrays
(which we will learn in a few
weeks)

/* how many iterations required */
for(int i=0; i < 5; i++)
{

cin >> i;
cout << i << endl;

}

int i=0;
/* how many iterations required */
while(i != -1)
{

cin >> i;
cout << i << endl;

}

15

Common Loop Mistakes

• Updating the inductive
variable in the wrong
direction

• Off by one error

• Missing the exit condition

int i=0, n=10;
for (i=n; i>0; i++) // oops, meant i--
{

cout << "Iteration " << i << endl;
}

// Print "Hello" 5 times
for (i=0; i<=5; i++) // oops, meant <
{

cout << "Hello" << endl;
}

// Print "0", "2", and "4"
for (i=0; i!=5; i+=2) // oops, infinite
{

cout << i << endl;
}

16

Converting while to for Loops

cin >> guess;
while (guess != secretnum)
{

cout << "Try again!" << endl;
cin >> guess;

}
cout << "You got it!" << endl;

for(cin >> guess;
guess != secretnum;
cin >> guess)

{
cout << "Try again!" << endl;

}
cout << "You got it!" << endl;

for(int i=0; i < 5; i++)
{

cout << i << endl;
}

int i=0;
while(i < 5)
{

cout << i << endl;
i++;

}

17

break Statement

• Sometimes we will want to
iterate some number of times
under normal circumstances,
but stop iterating immediately
if a certain condition is true (i.e.
halt the loop)

• The break keyword will
immediately cause the current
loop to exit if it is executed
– Note: break should always be in

some kind of conditional (if or
else) as otherwise the loop
would only iterate once

/* Give the user 10 turns
but stop if guess right */

int i, guess, secretNum = /* ... */
for(i=0; i < 10; i++)
{

cin >> guess;
if(guess == secretNum){

break;
}

}
if(i == 10){

cout << "You lose!" << endl;
}
else {

cout << "You win!" << endl;
}

18

Exercises 3

• cpp/for/rps-bestof3

19

Exercise 1 Solutions

• Write a for loop to
generate all the
elements of the
specified sets

for(int i=0; i < 8; i++)
{

cout << 4*i+3 << endl;
}
//or
for(int i=3; i <=31; i+=4)
{

cout << i << endl;
}

𝑺 = 𝟑, 𝟕, 𝟏𝟏, 𝟏𝟓, 𝟏𝟗, 𝟐𝟑, 𝟐𝟕, 𝟑𝟏

for(int i=-5; i <= 5; i++)
{

cout << abs(i) << endl;
}

𝑻 = 𝟓, 𝟒, 𝟑, 𝟐, 𝟏, 𝟎, 𝟏, 𝟐, 𝟑, 𝟒, 𝟓

