Unit 8

'for' Loops

i, TS(“Viterbi -

School of Engineering

Side Topic: Pre-/Post- Increment/Decrement

Recall the increment and decrement operators: ++ and --

— If ++ comes before a variable it is call pre-increment; if after, it is called post-increment

— X++; // If x was 2 it will be updated to 3 (x = x + 1)

— ++Xx; // Same as above (no difference when not in a larger expression)
— X--3; // If x was 2 it will be updated to 1 (x = x - 1)

— --X; // Same as above (no difference when not in a larger expression)

* Difference between pre- and post- is only evident when used in a larger
expression
* Meaning:
— Pre: Update (inc./dec.) the variable before using it in the expression
— Post: Use the old value of the variable in the expression then update (inc./dec.) it

 Examples [suppose we start each example with: int y; int x = 3;]
— y = Xx++ + 5; // Post-inc.; Use x=3 in expr. then inc. [y=8, x=4]
— y = ++x + 5; // Pre-inc.; Inc. x=4 first, then use in expr. [y=9, x=4]
— y = Xx-- +5; // Post-dec.; Use x=3 in expr. then dec. [y=8, x=2]
— y=--x+5; // Pre-dec.; Dec. x=2 first, then use in expr. [y=7, x=2]

Control Structures

* We need ways of making decisions in our program
— To repeat code until we want it to stop
— To only execute certain code if a condition is true
— To execute one segment of code or another

* Language constructs that allow us to make decisions
are referred to as control structures

* The common ones are:
— if statements
— switch statements
— while loops
— for loops

- 00000000 USCViterbi @
for Loops

» 'for' loops provide additional syntax for initialization and an
update after each iteration

while (condition) for(init; condition; update)
{ {
// executed if condition 1is true // executed if condition 1is true
} // go to top, eval cond. again } // go to top, do update, eval cond. again
// following statements // following statements
// only gets here when cond. is false // only gets here when cond. is false
- False J
— condition \/ False
— condition —
} True | True
while Block For Block
Statements Example Statements
: for(int i=0; i < 5; i++) I
Following |, { ——/ Update
statements cout << i << endl;
} Following [e—

i, TS(“Viterbi s

'for' Loop Sequencing

Condition: T T F

1 I VY y
* for Ioop for‘(ainit; gyn?i(taion; %cgte)
. . {
— performs NIt //ge?ecuted if condition is true

} // go to top, do update, eval cond. again

statement once
©| // following statements

—_ CheCkS the Condition // only gets here when cond. is false
each iteration before irlit |
. g False
deciding to execute the A condition ——
body or end the loop I True
For Block

— performs the update S—
statement after each ¢
_ Update
execution of the body

Following [e—

i, TS(“Viterbi -

Some Examples

#include <iostream>
using namespace std;
int main()
{
int 1i;
for(i=0; i < 5; i++)
{
cout << i << endl;
}
return 0;
}

School of Engineering

Program Output:

#include <iostream>
using namespace std;
int main()

{
int i;
for(i=8; i > @; i=i/2)
{
cout << 1 << endl;
}
return 0;
}

PUWNRERO

Program Output:

RN D oo

The initial value, condition, and update statement can be any valid expression!

e — ()5 Viterbi
Sets and For Loops

Generate the first 10 multiples of 3:

* For loops can often be used to §={3i]ieN,1 <i<10}
generate or iterate over all the —
i i;
elements of a set // print first 10 multiples of 3
. . for(i=1; i <= 10; i++)
* For loops will usually utilize some {
. cout << 3*i << endl;
variable to track/count how many }
iterations have elapsed // What is i when the loop ends?

— This is often known as the inductive Generate the first 20 positive odd #s

or control variable S={2i+1|i€eN0 <i<19)
* |f we want to iterate n times, the int i;
. g . // print first 20 pos. odd #s

common idiom is to start at 0 and for(i=e; i < 20; i++)
iterate through n-1, stopping on n o e endl;
_ . o . . }

This is not a reql‘Jlrement, we Can // What is i when the loop ends?

start where we like

i, TS(“Viterbi

School of Engineering

Tangent: Scope

#include <iostream>
. . . using namespace std;
* Atangent that will be relative in int main()
our discussion of for loops is the L. i
idea of scope cin >> 1;
* Scope refers to the lifetime and (1 > 0){ |
e en ene . int temp = 2*i;
visibility of a variable cout << temp << endl;
.) } // temp died here
— Recall variables are just memory temp = i++; // won't compile
slots in the computer CEWE << “ERmp << @mEls
— The program will reclaim those return @;
memory spots when a variable "dies" |} // 1 dies here
* |n C/C++, a variable's scope is the

curly braces {} it is declared within

 Main Point: A variable dies at the
end of the {...} it was declared in

i, TS(“Viterbi -

School of Engineering

Declaring the Inductive Variable

e The initialization statement can be | #include <iostream>

using namespace std;

used to declare a control/inductive | int main()

: . : : {
variable but its scope is considered int n;

to be the for loop (even though itis | o ;.

for(int i=0; i < n; i++){
i i cout << 3*i << endl;
not technically declared in the {..} e s e
of the for loop
. . . . // won't compile
— Just realize that variable will die at cout << i << endl;
the end of the loop

// okay to reuse i

 However, because it dies after the for(int i=0; i < nj i++){
. cout << 4*i << endl;
first loop you can use that same } // reincarnated i dies again

variable name in a subsequent loop | cturn o;
} // n dies here

Hand Tracing (1)

* For the first program,
trace through the code
and show all changes to i
for:

— n=2;

* For the second program,
trace through the code
and show the output for:

— t= PI/2, T=2*PI

int main()
{
int n;
cin >> n;
for(int 1 = -n; i <= n; i++)
{

cout << i << endl;

}

return 0;

int main()
{
double t, T;
cin > t >> T;
for(double th = 0 ; th < T; th += t)
{

cout << sin(th) << endl;

}

return 0;

Hand Tracing (2)
* For the first program, (a0
trace through the code RO ;s
and ShOW a“ Changes tO | gor‘(lnt i=1; i <= x; i=i+y)
and y f()r: ;22‘5 << i << endl;
}
—x=10 return 0;
}
— y — 2
* For the second program, | ™ ™0
int x, y;
trace through the code e
and show all changes to i gow X < y; xH+)
. cout << x << " " << y << endl;
andy for: o
- X= 4 return 0;
}

—y=11

Exercises 1
° Write a fOr IOOp tO §$=1{3,7,11,15,19,23,27,31}
generate all the Eor'(int i=0; i < 8; i++)
elements of the A
specified sets
T={543,2,1,0,1,2,3,4,5}
for(int i=-5; i <= 5; i++)
{
cout <« << endl;

}

- USCViterbi @
Exercises 2

* cpp/for/blastoff

* cpp/for/interest

* cpp/for/sum-mult-2-5
* cpp/for/bottles-wall

i, TS(“Viterbi

School of Engineering

'while' or 'for’

While Loops

e Usually used to repeat code
until some condition is false

For Loops

Usually used to repeat code
some known amount of
time

Very useful to access arrays
(which we will learn in a few
weeks)

int i=0;
/* how many iterations required */
while(i != -1)
{
cin >> 1i;
cout << i << endl;

}

/* how many iterations required */
for(int i=0; i < 5; i++)
{

cin >> i;

cout << 1 << endl;

}

Common Loop Mistakes

Updating the inductive
variable in the wrong
direction

Off by one error

Missing the exit condition

int i=0, n=10;
for (i=n; i»>@; i++) // oops, meant i--

{

cout << "Iteration "

}

<< 1 << endl;

// Print "Hello" 5 times
for (i=@; i<=5; i++) // oops, meant <

{

cout << "Hello" << endl;

}

// Pr\int ll@ll-’ "2", and ||4"
for (i=0; il!=5; i+=2) // oops, infinite

cout << 1 << endl;

i, TS(“Viterbi

School of Engineering

Converting while to for Loops

for(int i=0; i < 5; i++)
{

cout << i << endl;

}

int i=0;

while(i < 5)

{
cout << 1 << endl;
i++;

}

cin >> guess;

while (guess != secretnum)
cout << "Try again!" << endl;
cin >> guess;

}

cout << "You got it!" << endl;

for(cin >> guess;
guess != secretnum;
cin >> guess)

{
¥

cout << "You got it!" << endl;

cout << "Try again!" << endl;

- USCViterbi@
break Statement

Sometimes we will want to
iterate some number of times
under normal circumstances,
but stop iterating immediately

if a certain condition is true (i.e.

halt the loop)

* The break keyword will

immediately cause the current
loop to exit if it is executed

— Note: break should always be in
some kind of conditional (1f or
else) as otherwise the loop
would only iterate once

School of Engineering

/* Give the user 10 turns
but stop if guess right */

int i, guess, secretNum = /* ... */
for(i=0; i < 10; i++)
{

cin >> guess;

if(guess == secretNum){

break;
/}
}
\‘ if(i == 10){

cout << "You lose!" << endl;

}

else {
cout << "You win!" << endl;

}

- USCViterbi .
Exercises 3

* cpp/for/rps-bestof3

Exercise 1 Solutions

* Write a for loop to
generate all the
elements of the
specified sets

$=1{3,7,11,15,19,23,27,31}

for(int i=0; i < 8; i++)
{

cout << 4*i+3 << endl;

}
//or
for(int i=3; i <=31; i+=4)

{

cout << i << endl;

}

T=1{54,32,1,0,1,2,3,4,5}

for(int i=-5; i <= 5; i++)

{

cout << abs(i) << endl;

}

