
1

Unit 7

'while' Loops

2

Control Structures

• We need ways of making decisions in our program

– To repeat code until we want it to stop

– To only execute certain code if a condition is true

– To execute one segment of code or another

• Language constructs that allow us to make decisions
are referred to as control structures

• The common ones are:

– if statements

– switch statements

– while loops

– for loops

3

Loops
• Loops are structures of code that may be repeated

some number of times

• Examples:

– Sum each student's grades (for all students in the class)

– Search through a sequence of numbers for a particular
value

– Attend lecture

• We need some condition to tell us when to stop
looping, otherwise we'll repeat our code forever
and never stop (a.k.a. an infinite loop)

• Several kinds of loops: 'while', 'do..while', and 'for'

– We will focus on 'while' and 'do..while' in this unit

4

Why We Need Loops (1)

• Suppose we are writing
a program for a simple
turn-based guessing
game where the user
must guess a secret
number

• If they guess incorrectly
what should we do?

#include <iostream>
using namespace std;
int main()
{

int guess;
int secretNum = /* some code */
cin >> guess;
if(guess != secretNum) {

/* What should we do here? */

}
else {

cout << "You got it!" << endl;
}
return 0;

}

5

Why We Need Loops (2)

• What if they guess
wrong a second time?
What should we do?

#include <iostream>
using namespace std;
int main()
{

int guess;
int secretNum = /* some code */
cin >> guess;
if(guess != secretNum) {

cin >> guess;
if(guess != secretNum) {

/* What should we do here? */
}
else {

cout << "You got it!" << endl;
}

}
else {

cout << "You got it!" << endl;
}
return 0;

}

6

Why We Need Loops (2)

• We can never write
enough if statements
because someone might
always use one more
turn than we have if
statements

• But we see there is a
repetitive structure in
this code

• Let's use a loop

#include <iostream>
using namespace std;
int main()
{

int guess;
int secretNum = /* some code */
cin >> guess;
if(guess != secretNum) {

cin >> guess;
if(guess != secretNum) {

cin >> guess;
if(guess != secretNum) {
/* What should we do here? */

}
else {

cout << "You got it!"<< endl;
}

}
else {

cout << "You got it!" << endl;
}

}
else {

cout << "You got it!" << endl;
}

7

while Loops

• A while loop is essentially a repeating 'if' statement

if (condition)
{

// executed if condition1 is true
}
// following statements

condition

If Block
Statements

True

False

Following
statements

while (condition)
{

// executed if condition1 is true
} // go to top, eval cond1 again

// following statements
// only gets here when cond1 is false

condition

while Block
Statements

True

False

Following
statements

8

while Loops

• A while loop is essentially a repeating 'if' statement

while (condition)
{

// executed if condition1 is true
} // go to top, eval cond1 again

// following statements
// only gets here when cond1 is false

condition

while Block
Statements

True

False

Following
statements

1

Condition:

2

3

4

5

6

T T F

9

When Do I Use a While Loop (1)

• When you don't know
in advance how many
times something
should repeat?

– How many guesses will
the user need before
they get it right?

#include <iostream>
using namespace std;
int main()
{

int guess;
int secretNum = /* some code */
cin >> guess;
while(guess != secretNum) {

cout << "Enter guess: " << endl;
cin >> guess;

}
cout << "You got it!" << endl;
return 0;

}

10

When Do I Use a While Loop (2)

• Whenever you see or
use the word 'until' in
a description

• Important Tip:

– "until" = "while not"

– Saying "keep guessing
until you are correct"
is the same as "keep
guessing while you are
not correct"

#include <iostream>
using namespace std;
int main()
{

int guess;
int secretNum = /* some code */
cin >> guess;
while(guess != secretNum) {

cout << "Enter guess: " << endl;
cin >> guess;

}
cout << "You got it!" << endl;
return 0;

}

11

What Goes In an while Block

• What do we put in an
while loop?

• ANYTHING!

– Expressions & variable
assignment

– Function calls

– Even other if..else
statements

#include <iostream>
using namespace std;
int main()
{

int guess;
int secretNum = /* some code */
cin >> guess;
while(guess != secretNum) {

cout << "Enter guess: " << endl;
cin >> guess;

}
cout << "You got it!" << endl;
return 0;

}

12

What Goes In an while Condition

• What do we put in a
while condition?

• ANYTHING.

– The compiler will
interpret what is in the
parentheses as a
Boolean

• 0 = false

• Non-0 = true

int main()
{

int x, y, val;
bool done;

// Uses Boolean result of comparison
while(x > 0) { /* code */ }

// Uses value of bool variable.
// Executes if done == false.
while(!done) { /* code */ }

// Interprets number as a bool
// Executes if val is non-zero
while(val) { /* code */ }

// Interprets return value as bool
// Executes if the min is non-zero
while(min(x,y)) { /* code */ }

return 0;
}

13

Hand Tracing (1)

• Trace through the code
and show all changes to x
and y for:

– x = 24

– y = 18

int main()
{

int x, y;
cin >> x;
while((x % 2) == 0){

x = x/2;
}

cin >> y;
while(y > 0){

if(y >= 10){
y -= 5;

}
else if(y >= 5){

y -= 3;
}
else {

y -= 1;
}

}
return 0;

}

14

Hand Tracing (2)

• Trace through the code
and show all changes to x
and y for:

– x = 27

– y = 6

int main()
{

int x, y;
cin >> x;
while((x % 2) == 0){

x = x/2;
}

cin >> y;
while(y > 0){

if(y >= 10){
y -= 5;

}
else if(y >= 5){

y -= 3;
}
else {

y -= 1;
}

}
return 0;

}

15

Exercises 1

• cpp/while/whilen

• cpp/while/sum50

• cpp/while/blastoff

16

do..while Loops (1)

• while loops have a sibling
known as do..while loops

• do..while loops

– Start with keyword do

– Followed by the body of code
to be executed repeatedly in
brackets { }

– Ends with while condition
and semicolon (;)

• do..while loops will execute
the body at least once

int main()
{

int x, y, val;
bool quit;

// a while loop
while(x < val)
{

/* body of code */
}

// a do..while loop
do
{

/* body of code */
} while(x < val);

return 0;
}

17

do..while Loops (2)

• do..while loops check the condition after executing at least
once and repeat if the condition is true

while (condition)
{

// executed if condition1 is true
} // go to top, eval cond1 again

// following statements
// only gets here when cond1 is false

condition

while Block
Statements

True

False

Following
statements

do
{

// executed at least once
} while (condition);// go to 'do' (top)

//if cond1 evals to true
// following statements
// only gets here when cond1 is false

condition

while Block
Statements

True

False

Following
statements

18

do..while Loops (3)

• do..while loops check the condition after executing at least
once and repeat if the condition is true

do
{

// executed at least once
} while (condition);// go to 'do' (top)

//if cond1 evals to true
// following statements
// only gets here when cond1 is false

condition

while Block
Statements

True

False

Following
statements

1

Condition:
2

3

4

5

7

T T F
6

19

When Should I Use do..while

• We generally prefer while loops

• We can use do..while loops when we know we
want to execute the code at least one time
(and then check at the end)

• Even then…

– See next slide

20

Converting do..while to while Loops

do
{

cin >> guess;
} while (guess != secretnum);
cout << "You got it!" << endl;

cin >> guess;
while (guess != secretnum)
{

cin >> guess;
} // go to top, eval cond1 again
cout << "You got it!" << endl;

guess = secretnum + 1;
while (guess != secretnum)
{

cin >> guess;
} // go to top, eval cond1 again
cout << "You got it!" << endl;

We can duplicate the body of the loop

once before we start the loop.

We can set our variables to ensure

the while condition is true the first

time.

We need to get one guess at least

and then determine if we should

repeat. This seems a natural fit for the

do..while structure but we can easily

mimic this behavior with a normal

while loop.

21

Exercises 2

• cpp/while/dowhilen

• cpp/while/goldilocks

22

Common Loop Mistakes

• Failing to update the
variables that affect the
condition

• Assignment rather than
equality check

• Off by one error

• Often leads to infinite
loops

– When you run your
program it will not stop

– Use Ctrl+c to force quit it

int i=0, n=10;
while (i < n)
{

cout << "Iteration " << i << endl;
// Oops forgot to change i

}
cout << "Done" << endl;

int i=0, n=5;
while (i = n) // oops, meant i==n
{

cin >> i;
}
cout << "Done" << endl;

int i=0;
// want to print "Hi" 5 times
while (i <= 5) // oops, meant i < n
{

cout << "Hi" << endl;
i++;

}

23

Flags: A Common while Structure

• A Boolean flag

– Two values: true or false

– Pattern: Initialize to a value
that will cause the while
loop to be true the first
time and then check for
the ending condition in an
if statement and update
the flag

– Up to you to determine the
meaning of the flag (e.g.
done or again)

int guess, secretNum;
bool done = false;
while (! done)
{

cin >> guess;
if(guess == secretNum) {

done = true;
}

}
cout << "You got it!" << endl;

int guess, secretNum;
bool again = true;
while (again)
{

cin >> guess;
if(guess == secretNum) {

again = false;
}

}
cout << "You got it!" << endl;

