Unit 7/

'while' Loops

Control Structures

* We need ways of making decisions in our program
— To repeat code until we want it to stop
— To only execute certain code if a condition is true
— To execute one segment of code or another

* Language constructs that allow us to make decisions
are referred to as control structures

* The common ones are:
— if statements
— switch statements
— while loops
— for loops

Loops are structures of code that may be repeated
some number of times

Examples:
— Sum each student's grades (for all students in the class)

— Search through a sequence of numbers for a particular
value

— Attend lecture ©

We need some condition to tell us when to stop
looping, otherwise we'll repeat our code forever
and never stop (a.k.a. an infinite loop)

Several kinds of loops: 'while’, 'do..while’, and 'for

— We will focus on 'while' and 'do..while' in this unit

Why We Need Loops (1)

* Suppose we are writing
a program for a simple
turn-based guessing
game where the user
must guess a secret
number

 |f they guess incorrectly
what should we do?

#include <iostream>
using namespace std;
int main()
{
int guess;
int secretNum = /* some code */
cin >> guess;
if(guess != secretNum) {
/* What should we do here? */

}

else {
cout << "You got it!" << endl;

}

return 0;

i, TS(“Viterbi -

Why We Need Loops (2)

#include <iostream>
using namespace std;

* What if they guess Int nstn()

wrong a second time? int guess;

int secretNum = /* some code */

What ShOUld We dO? zi?g:;sgufiséecr‘emum) {

cin >> guess;
if(guess != secretNum) {
/* What should we do here? */

}

else {
cout << "You got it!" << endl;

}
}

else {
cout << "You got it!" << endl;

}

return 0;

Why We Need Loops (2)

* We can never write
enough 1f statements
because someone might
always use one more
turn than we have 1f
statements

e But we see thereis a
repetitive structure in
this code

e Let'suse aloop

#include <iostream>
using namespace std;
int main()
{
int guess;
int secretNum = /* some code */
cin >> guess;
if(guess != secretNum) {
cin >> guess;
if(guess != secretNum) {
cin >> guess;
if(guess != secretNum) {
/* What should we do here? */
}
else {
cout << "You got it!"<< endl;

}
}

else {
cout << "You got it!" << endl;

¥
}

else {
cout << "You got it!" << endl;

}

i, TS(“Viterbi -

while Loops

A while loop is essentially a repeating 'if' statement

if (condition) while (condition)
{ {

// executed i1f conditionl 1is true // executed if conditionl 1is true
} L} // go to top, eval condl again

// following statements

// following statements
// only gets here when condl is false

False False
True True
If Block while Block
Stateinents Statements
Following | Following |

statements K ' ;'*\. \‘: : statements
=== ~:§»\:>_,~,?re§Foféi

i, TS(“Viterbi

School of Engineering

while Loops

A while loop is essentially a repeating 'if' statement

Condition: T T F

DO while (condition)

{
(2 X 4) // executed i1f conditionl 1is true

} // go to top, eval condl again

164 // following statements
// only gets here when condl is false

False
— condition —_

lTrue

while Block

Statements

Following
statements

i, TS(“Viterbi -

School of Engineering

When Do | Use a While Loop (1)

° When you don't knOW #include <iostream>

using namespace std;
int main()

in advance how many ||

int guess;

t|mes Someth|ng int secretNum = /* some code */
:) cin >> guess;
while(guess != secretNum) {
ShOUId repeat° cout << "Enter guess: " << endl;

cin >> guess;

— How many guesses will }

cout << "You got it!" << endl;

the user need before .
they get it right?

I (/S C Viterbi (U2

School of Engineering

When Do | Use a While Loop (2)

* Whenever you see or
use the word 'until’ in
a description
* Important Tip:
— "until" = "while not"
— Saying "keep guessing
until you are correct”
is the same as "keep

guessing while you are
not correct”

#include <iostream>
using namespace std;
int main()

{

int guess;
int secretNum = /* some code */
cin >> guess;

while(guess != secretNum) {
cout << "Enter guess: " << endl;
cin >> guess;

}

cout << "You got it!" << endl;
return 0;

i, TS(“Viterbi (Cw

School of Engineering

What Goes In an while Block

° What do we pUt |n an #include <iostream>

using namespace std;

while |OOp? ?nt main ()
int guess;

° ANYTHING] int secretNum = /* some code */

cin >> guess;
while(guess != secretNum) {

— EXpreSSiOnS & Variable cout << "Enter guess: " << endl;
. cin >> guess;
aSS|gnment }
cout << "You got it!" << endl;
— Function calls return 6;

— Even other if..else
statements

i, TS(“Viterbi 2

School of Engineering

What Goes In an while Condition

int main()

* What do we putina
while condition? -

bool done;

° ANYTHING- // Uses Boolean result of comparison

. . while(x > 0) { /* code */ }
— The compiler will
// Uses value of bool variable.

iﬂtGFpFEt what is in the // Executes if done == false.
while(!done) { /* code */ }
parentheses as a
// Interprets number as a bool

BOOIGan // Executes if val is non-zero

while(val) { /* code */ }
* 0 =false
// Interprets return value as bool

° Non_o = true // Executes if the min 1is non-zero
while(min(x,y)) { /* code */ }

return 0;

Hand Tracing (1)

* Trace through the code

and show all changes to x

and vy for:
— x=24
—y=18

int main()

{
int x, y;
cin >> Xx;
while((x % 2) == 0){
X = X/2;

}

cin >> vy;
while(y > 0){
if(y >= 10){
y -= 5;
}
else if(y >=5){

y -= 3;
else {

y -= 1;

return 0;

Hand Tracing (2)

* Trace through the code

and show all changes to x

and vy for:
— x=27
_y=6

int main()

{
int x, y;
cin >> Xx;
while((x % 2) == 0){
X = X/2;

}

cin >> vy;
while(y > 0){
if(y >= 10){
y -= 5;
}
else if(y >=5){

y -= 3;
else {

y -= 1;

return 0;

] USCViterbi @
Exercises 1

* cpp/while/whilen
* cpp/while/sum50

* cpp/while/blastoff

do..while Loops (1)

while loops have a sibling
known as do..while loops

do..while loops

— Start with keyword do

— Followed by the body of code
to be executed repeatedly in
brackets { }

— Ends with while condition
and semicolon (;)

do..while loops will execute
the body at least once

int main()

{
int x, y, val;
bool quit;

// a while loop
while(x < val)

{
/* body of code */

}

// a do..while loop
do
{

/* body of code */
} while(x < val);

return 0;

i, TS(“Viterbi -

School of Engineering

do..while Loops (2)

* do..while loops check the condition after executing at least
once and repeat if the condition is true

while (condition)

{

// executed i1f conditionl 1is true
} // go to top, eval condl again

// following statements
// only gets here when condl is false

do
{
// executed at Lleast once
} while (condition);// go to 'do' (top)
//if condl evals to true
// following statements
// only gets here when condl is false

False
—> condition —_

1True

while Block
Statements

Following
statements

while Block
Statements
True v

— condition

| False

Following
statements

i, TS(“Viterbi

do..while Loops (3)

School of Engineering

do..while loops check the condition after executing at least
once and repeat if the condition is true

Condition:

(1A 3
2 M4
T T

¥y 00

do
{

}

//
//

// executed at Lleast once
while (condition);// go to 'do' (top)
//if condl evals to true
following statements
only gets here when condl is false

while Block

Statements
True v

— condition

| False

Following
statements

 We generally prefer while loops

* We can use do..while loops when we know we
want to execute the code at least one time
(and then check at the end)

* Even then...

— See next slide

i, TS(“Viterbi

School of Engineering

Converting do..while to while Loops

do cin >> guess;
{ while (guess != secretnum)
cin >> guess; {
} while (guess != secretnum); cin >> guess;
cout << "You got it!" << endl; } // go to top, eval condl again
cout << "You got it!l" << endl;

We need to get one guess at least We can duplicate the body of the loop
and then determine if we should once before we start the loop.

repeat. This seems a natural fit for the

do..while structure but we can easily guess = secretnum + 1;

mimic this behavior with a normal ‘f{’hile $EUESS 1S SEErEtE)

while loop. cin >> guess;

} // go to top, eval condl again
cout << "You got it!" << endl;

We can set our variables to ensure
the while condition is true the first
time.

] USCViterbi@
Exercises 2

ing

* cpp/while/dowhilen
* cpp/while/goldilocks

Common Loop Mistakes

Failing to update the
variables that affect the
condition

Assignment rather than
equality check

Off by one error
Often leads to infinite
loops

— When you run your
program it will not stop

— Use Ctrl+c to force quit it

int i=0, n=10;

while (i < n)

{
cout << "Iteration " << i << endl;
// Oops forgot to change i

}

cout << "Done" << endl;

int i=0, n=5;
while (i = n) // oops, meant i==n
{ 0 .
cin >> i;
}

cout << "Done" << endl;

int 1=0;
// want to print "Hi" 5 times
while (i <= 5) // oops, meant i < n
{
cout << "Hi" << endl;
i++;

}

i, TS(“Viterbi)

School of Engineering

Flags: A Common while Structure

A Boolean flag

— Two values: true or false

— Pattern: Initialize to a value

that will cause the while
loop to be true the first
time and then check for
the ending condition in an
if statement and update
the flag

— Up to you to determine the

meaning of the flag (e.g.
done or again)

int guess, secretNum;
bool done = false;
while (! done)
{ .
cin >> guess;
if(guess == secretNum) {
done = true;

¥
}

cout << "You got it!" << endl;

int guess, secretNum;
bool again = true;
while (again)
{ .
cin >> guess;
if(guess == secretNum) {
again = false;
}
}

cout << "You got it!" << endl;

