
1

Unit 4

Input (cin)

More Assignment

Statements

2

Review of Data Types

• bool
– true or false values

• int or unsigned int
– Integer values

• char
– A single ASCII character

– Or a small integer (but just use 'int')

• double
– A real number (usually if a decimal/fraction is needed) but also for

very large numbers

• string
– Multiple text characters, ending with the null ('\0' = 00) character

3

VARIABLES

4

The Need For Variables & Input
// iostream allows access to 'cout'
#include <iostream>
using namespace std;

// Execution always starts at the main() function
int main()
{

cout << "3 dozen is " << 3*12 << " items." << endl;

// the above results in the same output as below

cout << "3 dozen is 36 items." << endl;

return 0;
}

• Printing out constants is not very
useful (nor exciting)

• In fact, we could just as easily
compute the value ourselves in
many situations

• The real power of computation
comes when we introduce
variables and user input
– Variables provide the ability to

remember and name a value for use
at a later time

– User input allows us to write general
programs that work for "any" input
values

– Thus, a more powerful program
would allow us to enter an arbitrary
number and perform conversion to
dozens

5

C/C++ Variables

• Variables allow us to
– Store a value until it is needed and change its

values potentially many times

– Associate a descriptive name with a value

• Variables are just memory locations that are
reserved to store a piece of data of specific
size and type

• Programmer indicates what variables they
want when they write their code
– Difference: C requires declaring all variables at

the beginning of a function before any operations.
C++ relaxes this requirement.

• The computer will allocate memory for
those variables when the code starts to run

• We can provide initial values via '=' or leave
them uninitialized

01000001

01001011

10010000

11110100

01101000

11010001

…

00001011

0

1

2

3

4

5

1023

char gr = 'B';

A single-byte

variable

01101000

11010001

6

7

int x;

A four-byte

variable

#include <iostream>
using namespace std;

int main()
{ // Sample variable declarations

char gr = 'A';
int x; // uninitialized variables

// will have a (random) garbage
// value until we initialize it

x = 1; // Initialize x's value to 1
gr = 'B'; // Change gr's value to 'B'

}

Variables are actually allocated in

RAM when the program is run

A picture of computer memory

(aka RAM)

6

C/C++ Variables

• Variables have a:

– type [int, char, unsigned int,float, double, etc.]

– name/identifier that the programmer will use to
reference the value in that memory location [e.g. x,
myVariable, num_dozens, etc.]
• Identifiers must start with [A-Z, a-z, or an underscore ‘_’] and can

then contain any alphanumeric character [0-9, A-Z, a-z, _] (but no
punctuation other than underscores)

• Use descriptive names (e.g. numStudents, doneFlag)

• Avoid cryptic names (myvar1, a_thing)

– location [the address in memory where it is allocated]

– Value

• Reminder: You must declare a variable before using it

int quantity = 4;
double cost = 5.75;
cout << quantity*cost << endl;

4

quantity

1008412

cost

287144 5.75

Code

What's in a name?
To give descriptive names we often
need to use more than 1 word/term.
But we can't use spaces in our
identifier names. Thus, most
programmers use either camel-case or
snake-case to write compound names
Camel case: Capitalize the first letter
of each word (with the possible
exception of the first word)

myVariable, isHighEnough
Snake case: Separate each word with
an underscore '_'

my_variable, is_high_enough

Address

name

value

7

Know Your Common Variable Types

C Type Usage Bytes Bits Range

char Text character
Small integral value

1 8 ASCII characters
-128 to +127

bool True/False value 1 8 true / false

int
unsigned int

Integer values 4 32 -2 billion to +2 billion
0 to +4 billion

double Rational/real values 8 64 ±16 significant digits
* 10+/-308

string Arbitrary text - - -

// iostream allows access to 'cout'
#include <iostream>
using namespace std;

// Execution always starts at the main() function
int main()
{
int w = -400;
double x = 3.7;
char y = 'a';
bool z = false;
cout << w << " " << x << " ";
cout << y << " " << z << endl;
return 0;

}

• Variables are declared by listing
their type and providing a name
• They can be given an initial

value using the '=' operator

8

When Do We Need Variables?

• When a value will be supplied
and/or change at run-time (as the
program executes)

• When a value is computed/updated
at one time and used (many times)
later

• To make the code more readable by
another human

double area = (56+34) * (81*6.25);
// readability of above vs. below
double height = 56 + 34;
double width = 81 * 6.25;
double area = height * width;

9

What Variables Might Be Needed

• Calculator App

– Current number input, current result

• Video playback (YouTube player)

– Current URL, full screen, volume level

10

Assignment (=) Operator

• To update or change a value in a
variable we use the assignment
operator (=)

• Syntax:
– variable = expression;

(Left-Side) (Right-side)

• Semantics:
– Place the resulting value of

'expression' in the memory
location associated with 'variable'

– Does not mean "compare for
equality" (e.g. is w equal to 300?)
• That is performed by the == operator

// iostream allows access to 'cout'
#include <iostream>
using namespace std;

// Execution always starts at the main() function
int main()
{
int w; // variables don't have to
char x; // be initialized when declared

w = 300;
x = 'a';
cout << w << " " << x << endl;

w = -75;
x = '!';
cout << w << " " << x << endl;
return 0;

}

variable = expression;

Order of evaluation: right to left

Assignment is one of the most common operations in programs

Output:
300 a
-75 !

11

Assignment & Expressions

• Variables can be used in expressions and be operands for
arithmetic and logic

• See inset below on how to interpret a variable's usage based
on which side of the assignment operator it is used

// iostream allows access to 'cout'
#include <iostream>
using namespace std;

// Execution always starts at the main() function
int main()
{
int dozens = 3;
double gpa = 2.0;

int num = 12 * dozens;
gpa = (2 * 4.0) + (4 * 3.7); // gpa updated to 22.8
gpa = gpa / 6; // integer or double division?

cout << dozens << " dozen is " << num << " items." << endl;
cout << "Your gpa is " << gpa << endl;
return 0;

}

int x = 0;
x = x + 3;

Order of evaluation: right to left

Semantics of variable usage:

• Right-side of assignment: Substitute/use

the current value stored in the variable

• Left-side of assignment: variable is the

destination location where the result of

the right side will be stored

current-value of x

(0)

new-value of x

(3)

12

Exercises

• What is printed by the following two programs?

#include <iostream>
using namespace std;

int main()
{
int value = 1;
value = (value + 5) * (value – 3);
cout << value << endl;

double amount = 2.5;
value = 7;
amount = value + 6 / amount;
cout << amount << endl;

cout << value % 3 << endl;
return 0;

}

#include <iostream>
using namespace std;

int main()
{
int x = 5;
int y = 3;
double z = x % y * 6 + x / y;

cout << z << endl;

z = 1.0 / 4 * (z – x) + y;
cout << z << endl;

return 0;
}

13

RECEIVING INPUT WITH CIN

14

Keyboard Input

#include <iostream>
using namespace std;

int main()
{
int dozens;

cout << "Enter number of dozen: "
<< endl;

cin >> dozens;

cout << 12 * dozens << " eggs" << endl;
return 0;

}

1 5

• In C++, the 'cin' object is
in charge of receiving
input from the keyboard

• Keyboard input is
captured and stored by
the OS (in an "input
stream") until cin is
called upon to "extract"
info into a variable

• 'cin' converts text input
to desired format (e.g.
integer, double, etc.)

cin

\n

15

dozens

input stream:

input stream:

\n

15

Dealing With Whitespace

#include <iostream>
using namespace std;

int main()
{
int dozens;

cout << "Enter number of dozen: "
<< endl;

cin >> dozens;

cout << dozens << " dozen "
<< " is " << 12*dozens
<< "items." << endl;

return 0;
}

• Whitespace (def.):
– Characters that represent

horizontal or vertical blank
space. Examples: newline
('\n'), TAB ('\t'),
spacebar (' ')

• cin sequentially scans the
input stream for actual
characters, discarding
leading whitespace
characters

• Once cin finds data to
convert it will STOP at the
first trailing whitespace
and await the next cin
command

5

cin

\n

15

dozens

input stream:

input stream:

Suppose at the prompt

the user types:

1

\n

\t

Main Take-away:
cin SKIPS leading whitespace
cin STOPS on the first trailing

whitespace

16

Timing of Execution

#include <iostream>
using namespace std;

int main()
{
int dozens;

cout << "Enter number of dozen: "
<< endl;

cin >> dozens; // input stream empty
// so wait for input

cout << 12*dozens << " eggs" << endl;

double gpa;
cout << "What is your gpa?" << endl;
cin >> gpa; // input stream has text

// so do not wait…
// just use next text

cout << "GPA = " << gpa << endl;
return 0;

}

• When execution hits a
'cin' statement it will:
– Wait for input if

nothing is available in
the input stream
• OS will capture what is

typed until the next
'Enter' key is hit

• User can type as little or
much as desired until
Enter (\n)

– Immediately extract
input from the input
stream if some text is
available and convert it
to the desired type of
data

5

cin

3 . 7 \n

3 . 7

15

dozens

input stream:

input stream:

cin

input stream:

No input available. Wait

for user to type and hit

Enter

1

\n

cin

\n

3.7

gpa

17

Excercises

• cpp/cin/building_floor

18

ASSIGNMENT AND ORDERING

Common Idioms and Potential Pitfalls

19

Temporal/Sequential Nature of Assignment

• It is critical to realize that
assignment:
– Does NOT create a permanent

relationship that causes one variable to
update if another does

– Uses the variable values at the time the
line of code is executed

– Copies (not moves) data to the
destination variable

• So the result of assignment
statements depend on the order
(timing) in which they are executed
because one statement may affect
the next

int main()
{

int x = 5;

// Performs a one-time
// update of y to 2*5+1=11
int y = 2 * x + 1;

// This assignment will
// NOT cause y to be
// re-evaluated
x = 7;

// y is still 11 and not 15
cout << "y = " << y << endl;

// Copies the value of x into y
y = x;

// both x and y are 7 now
cout << x << " " << y << endl;
return 0;

}

20

Problem Solving Idioms

• An idiom is a colloquial or common
mode of expression

– Example: "raining cats and dogs"

• Programming has common modes of
expression that are used quite often to
solve problems algorithmically

• We have developed a repository of these
common programming idioms. We
STRONGLY suggest you

– Reference them when attempting to
solve programming problems

– Familiarize yourself with them and their
structure until you feel comfortable
identifying them

http://bytes.usc.edu/cs102/idioms.html

21

Shifting and Rotation Assignment Idioms

• The shifting idiom shifts data among variables usually
replacing/dropping some elements to make room for
new ones

– The key pattern is some elements get dropped/overwritten
and other elements are reassigned/moved

– It is important to start by assigning the variable to be
replaced/dropped and then move in order to variables
receiving newer data

– Examples: Top k items (high score list)

• The rotation idiom reorders or rearranges data among
variables without replacing/dropping elements

– Swap is simply a rotation of 2 elements

– The key pattern is all elements are kept but just reordered

– It is usually necessary to declare and maintain some
temporary variable to avoid elements getting
dropped/overwritten

10 20 50

40
x1 x2 x3

10 20 50

x1 x2 x3

20 50 40

20 50 10

Shifting Idiom

Rotation Idiom

10 20

x1 x2

20 10

Swap

22

Shifting Idiom Ex. (Insertion)
• Suppose a business represents each client

with a 3-digit integer ID (and -1 to mean
"free")

– Lower IDs are given to more important
clients

– Client's with lower ID's always get the
appointment time they want

– Suppose client 105 calls and wants a 2 p.m.
appointment, will the highlighted code
below work?

• Shifting or rotation?

– Are we adding/dropping values or keeping
all the originals?

• Recall that statements execute one at a
time in sequential order

– Earlier statements complete fully before the
next starts

int main()
{

// Original appointment
// schedule
// Lower client ID gets
// earlier appointment
int apt_1pm = 100;
int apt_2pm = 120;
int apt_3pm = 140;
int apt_4pm = -1;

// Now client 105 wants
// a 2 p.m. appointment
apt_2pm = 105;
apt_3pm = apt_2pm;
apt_4pm = apt_3pm;

return 0;
}

23

Shifting Idiom Ex. (Insertion)

• To correctly code the shift, we must
start with the variable to be dropped

• The code to the right does not follow
this guideline
– Perform each highlighted operation one

at a time, marking up the diagram
below to see the error that results

int main()
{

// Original appointment
// schedule
// Lower client ID gets
// earlier appointment
int apt_1pm = 100;
int apt_2pm = 120;
int apt_3pm = 140;
int apt_4pm = -1;

// Now client 105 wants
// a 2 p.m. appointment
apt_2pm = 105;
apt_3pm = apt_2pm;
apt_4pm = apt_3pm;

return 0;
}

100

apt_1pm

120

apt_2pm

140

apt_3pm apt_4pm

100

apt_1pm apt_2pm apt_3pm apt_4pm

105
32

1

24

Shifting Idiom Ex. (Insertion)

• To correctly code the shift, we must
start with the variable to be dropped
– Move items in reverse order

int main()
{

// Original appointment
// schedule
// Lower client ID gets
// earlier appointment
int apt_1pm = 100;
int apt_2pm = 120;
int apt_3pm = 140;
int apt_4pm = -1;

// Now client 105 wants
// a 2 p.m. appointment
apt_4pm = apt_3pm;
apt_3pm = apt_2pm;
apt_2pm = 105;

return 0;
}

100

apt_1pm

120

apt_2pm

140

apt_3pm apt_4pm

100

apt_1pm apt_2pm apt_3pm apt_4pm

105
12

3

25

Shifting Idiom Ex. (Moving-Window)

• Suppose we only want to work with the last k (let k=3 for this
example) value input by the user
– Declare k variables (i.e. x1, x2, x3)

– As we receive new values we drop the undesired values shifting the
current values as needed via assignment operations

10 20 50
t=1

20 50 40

40

50 40 35

35

10 20 50 40 35

x1 x2 x3

x1 x2 x3

x1 x2 x3

10 20 50 40 35

10 20 50 40 35

t=2

t=3

int x1 = 10, x2 = 20, x3 = 50;

x1 x2 x3

x1 x2 x3

x1 x2 x3

26

Shifting Values (Moving Window) Idiom

• Remember, order of assignment is very important to avoid
overwriting data we still need

• Start by assigning the value to be overwitten/dropped…

• Continue assigning in order until reaching the variable that
should receive the new value

10 20 50
t=1

20 50 40

40

50 40 35

35

10 20 50 40 35

x1 x2 x3

x1 x2 x3

x1 x2 x3

10 20 50 40 35

10 20 50 40 35

t=2

t=3

int x1 = 10, x2 = 20, x3 = 50;

21

3
x1 x2 x3

x1 x2 x3

x1 x2 x3

27

Rotation Idiom Ex. (Swap)
• Given two variables, swap their contents

– Before: a = 7, b = 9

– Desired Result: a = 9, b = 7

• This is rotation because we want to keep all
values and just reorder them

• Since shifting requires us to start with the
variable to be overwritten/dropped and we
want to keep both values, no order of
assignment will work without a temporary
variable!

• Perform the code to the right to see the error:

– Actual Result: a = ___, b = ___;

int main()
{

int a = 7, b = 9;

// Now suppose we want to
// swap the values of
// a and b

// What will this do?
a = b;
b = a;

return 0;
}

7

a

9

b

9

a

9

b 21

7

9

a

b

Desired

Operation

28

Rotation Idiom Ex. (Swap)

• We need an extra, temporary
location to hold the old value of
one of the variables while we
update it to the new value

int main()
{

int a = 7, b = 9;

// Now suppose we want to
// swap the values of
// a and b

// Introduce a temp var.
int temp = a;
a = b;
b = temp;

return 0;
}

7

a

9

b

9

a

9

b

7

temp

9

a

7

b2

1 3

29

MORE OPERATIONS AND USING
MATH LIBRARY FUNCTIONS

30

Shortcut Assignment Statements

• A common task is to update a
variable by adding, subtracting,
multiplying, etc. some value to it
– x = x + 4;

– y = y * 2.5;

• C/C++ provide a shortcut for
writing these statements:
– x += 4;

– y *= 2.5;

• The substitution is:
– var op= expr;

– Becomes var = var op expr;

#include <iostream>
using namespace std;

int main()
{

int x = 1;
double y = 3.75;

x += 5; // x updates to 6
y -= 2.25; // y updates to 1.5
x /= 3; // x updates to 2
y *= 2.0 // y updates to 3.0

return 0;
}

31

Post-Increment/Decrement

• Adding 1 to a variable (e.g. x += 1) and subtracting 1 from a
variable (e.g. x -= 1) are extremely common operations
(especially when we cover loops).

• The ++ and -- operators offer a shortcut to "increment-by-1" or
"decrement-by-1"
– Performs (x += 1) or (x -= 1)

– x++; // If x was 2 it will be updated to 3 (x = x + 1)

– x--; // If x was 2 it will be updated to 1 (x = x – 1)

• Note: There are some nuances to this operator and an
alternative known as pre-increment/decrement that we will
discuss in future lectures but this is sufficient for now.

32

Casting Motiviation
• To achieve the correct answer for 5 + 3 / 2 we could…

• Make everything a double
– Write 5.0 + 3.0 / 2.0 [explicitly use doubles]

• Use implicit casting (mixed expression)
– Could just write 5 + 3.0 / 2

• If operator is applied to mixed type inputs, less expressive type is automatically
promoted to more expressive (int => double)

• But what if instead of constants we have variables
– int x=5, y=3, z=2;

x + y/z; // Won't work & you can't write y.0

• We need a way to explicitly cast a variable to a different type for
the sake of a computation

33

Casting
• To cast a variable, place the type to which you wan to cast in

parentheses BEFORE the variable

• Casting is the only way to convert a variable to a different
numeric type
– x + (double) y / z ; // z will be implicitly cast to a double

• This won't work
– x + (double) (y / z) ; // the integer division in parens goes first

• Notes:
– Only changes the type temporarily for the sake of the expression (not a

permanent type change)

– Only works on numeric types and not strings
• Can't cast an integer/double to a character or string

• double x = 1.6; int y = (int) x / 2; // fine !

• int x = 123; string y = (string) x; // doesn't work

• int x = (string) "123"; // doesn't work

34

Math & Other Library Functions

• C++ predefines a variety of functions for you. Here are
a few of them:

– sqrt(x): returns the square root of x (in <cmath>)

– pow(x, y): returns xy, or x to the power y
(in <cmath>)

– sin(x)/cos(x)/tan(s): returns the sine of x if x is in
radians (in <cmath>)

– abs(x): returns the absolute value of x (in <cstdlib>)

– max(x, y) and min(x,y): returns the
maximum/minimum of x and y (in <algorithm>)

• You call these by writing them similarly to how you
would use a function in mathematics [using
parentheses for the inputs (aka) arguments]

• Result is replaced into bigger expression

• Must #include the correct library
– #includes tell the compiler about the various pre-defined

functions that your program may choose to call

#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;

int main()
{

// can call functions
// in an assignment
double res = cos(0); // res = 1.0

// can call functions in an
// expression
res = sqrt(2) / 2; // res = 1.414/2

cout << max(34, 56) << endl;
// outputs 56

return 0;
}

http://www.cplusplus.com/reference/cmath/

http://www.cplusplus.com/reference/cmath/

35

Statements
• C/C++ programs are composed of statements

• Most common kinds of statements end with a semicolon

• Declarations (e.g. int x=3;)

• Assignment + Expression (suppose int x=3; int y;)
– x = x * 5 / 9; // compute the expression & place result in x

// x = (3*5)/9 = 15/9 = 1

• Assignment + Function Call (+ Expression)
– x = cos(0.0) + 1.5;

– sin(3.14); // Must save or print out the result (x = sin(3.14), etc.)

• cin, cout statements
– cout << cos(0.0) + 1.5 << " is the answer." << endl;

• Return statement (immediately ends a function)
– return value;

– More on this in Unit 6

36

I/O Manipulators
• Manipulators control HOW cout handles

certain output options and how cin
interprets the input data (but print
nothing themselves)

– Must #include <iomanip>

• Common examples

– setw(n): Separate consecutive outputs by
n spaces

– setprecision(n): Use n digits to
display doubles (both the integral +
decimal parts)

– fixed: Uses the precision for only the
digits after the decimal point

– boolalpha: Show Booleans as true and
false rather than 1 and 0, respectively

• Separated by << or >> and used inline with
actual data

• Other than setw, manipulators continue
to apply to other output until changed

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

double pi = 3.14159;

cout << pi << endl;
// Prints: 3.14159

cout << setprecision(2) << fixed << pi << endl;
// Prints: 3.14

return 0;
}

http://en.cppreference.com/w/cpp/io/manip

See "iomanip" in-class exercise to
explore various options

http://en.cppreference.com/w/cpp/io/manip

37

Exercises

• Exercises:

– cpp/cin/average

– cpp/cin/rad2deg

• Write a program to convert temperature from Celsius

to Fahrenheit [𝐹 =
9

5
∙ 𝐶 + 32]

– Use http://cpp.sh or http://onlinegdb.com

http://cpp.sh/
http://onlinegdb.com/

38

APPLICATIONS OF DIVISION AND
MODULO

Arithmetic Idioms

39

Integer Division and Modulo Operations

• Recall integer division discards the remainder (fractional
portion)
– Consecutive values map to the same value

• Modulo operation yields the remainder of a division of two
integers
– Consecutive values map to different values

– x mod m will yield numbers in the range [0 to m-1]

• Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15x

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3x/5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0

x

x%5

40

Unit Conversion Idiom

• The unit conversion idiom can be used to convert one value to
integral number of larger units and some number of
remaining items
– Examples:

• Ounces to Pounds and ounces

• Inches to Feet and inches

• Cents to Quarters, dimes, nickels, pennies

• Approach:
– Suppose we have n smaller units (e.g. 15 inches) and a conversion

factor of k small units = 1 large unit, (e.g. 12 inches = 1 foot) then…

– Using integer division (n/k) yields the integral number of larger units
(15/12 = 1 foot)

– Using modulo (n%k) will yield the remaining number of smaller units
(15 % 12 = 3 inches)

41

Exercise 1: Unit Conversion Idiom Ex.
(Making Change)

• Make change (given 0-100 cents) convert to
quarters, dimes, pennies

• cpp/var-expr/change

42

Exercise 2: Unit Conversion

• Suppose a knob or slider
generates a number x in the
range 0-255

• Use division or modulo to
convert x to a new value, y, in
the range 0-9 proportionally

• y = x ___________________

0=x

0=y

255

9

1

4
6

7

8

3

2

5

0 1 2 3 51 52 25525 26 53x

Each of the 10 bins

= ______ small units

43

Extracting/Isolating Digits Idiom

• To extract or isolate
individual digits of a number
we can simply divide by the
base

• Use modulus (%) to extract
the least-significant digits

• Use integer division (/) to
extract the most-significant
digits

10100 1

59 7.957 dec. =

0.1

0

0.01

0

957 % 10 = 7
957 / 10 = 95

957 % 100 = 57
957 / 100 = 9

44

Exercise 3: Isolating Digits Idiom

• Simulate 2 random coin flips producing
2 outcomes (H or T with 50/50 prob.)

• Use rand() to generate a random
number.
– rand() is defined in <cstdlib>

– Returns a random integer between 0 and
about 231

• Really +231-1

– Your job to convert r1 and r2 to either 0 or
1 (i.e. heads/tails) and save those values in
flip1 and flip2

0 1 2 3 +231.

#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{

// Generate a random number
int r1 = rand();
// And another
int r2 = rand();
int flip1 = _____________
int flip2 = _____________
cout << flip1 << flip2 << endl;
return 0;

}

flip1 = ______________

flip2 = ______________

45

Divisibility / Factoring Idiom

• Modulo can be used to
check if n is divisible by k

– Definition of divisibility is if
k divides n, meaning
remainder is 0

• To factor a number we
can divide n by any of its
divisors

12 % 3 = 0
=> 12 is divisible by 3

12 % 5 = 2
=> 12 is NOT divisible by 5

12 / 3 = 4
=> 4 remains after
=> factoring 3 from 12

46

Challenge Exercise
• cpp/var-expr/in_n_days

– Given the current day of the
week (1-7) add n days and
indicate what day of the week
(1-7) it will be then

• Write out table of examples
– Input => Desired Output

• Test any potential solution with
some inputs
– Cday = 1, n = 2…desired outcome = 3

– Cday = 1, n = 6…desired outcome = 7

• Plug in several values, especially
edge cases

int main()
{

int cday, n;
cin >> cday >> n;
int day_plus_n = ______________________;

return 0;
}

n
(assuming
c_day=1)

Day_plus_n
(desired)

1 2

2 3

3 4

4 5

5 6

6 7

7 1

8 2

n
(assuming
c_day=4)

Day_plus_n
(desired)

1 5

2 6

3 7

4 1

5 2

6 3

7 4

8 5

