
1

CS102 Unit 2

Programming Languages and

Simple Program Execution

2

Unit Objectives

• Define: algorithm, syntax, and semantics

• Know that statements in a program execute
sequentially by default

• Know the basic parts of a C++ program

– Inclusion of library "headers"

– Comments

– Code is partitioned into functions

– main() function as the starting point

3

ALGORITHMS & PROGRAMMING
LANGUAGES

4

Humans and Computers

• Humans understand instructions differently than
computers

• Humans easily tolerate ambiguity and abstract
concepts using context to help.

– “Add a pinch of salt.” How much is a pinch?

– “Steph Curry can shoot the lights out.”

– “It’s a bear market”

• Computers must be precise, only executing well-
defined instructions (no ambiguity) and operating on
digital information which is finite and discrete (a fixed
number of options)

5

Algorithms

• Algorithms are at the heart of computer
systems, both in HW and SW
– They are fundamental to Computer Science

and Computer Engineering

• Informal definition
– An algorithm is a precise way to accomplish a

task or solve a problem

• A more formal definition:
– An ordered set of unambiguous, executable

steps that defines a terminating process

• Examples: What is the algorithm for
– Brushing your teeth?

– Calculating your GPA?

Hardware

Software

6

Algorithm Representation

• An algorithm is not a program or programming
language

• Just as a story may be represented as a book, movie,
or spoken by a story-teller, an algorithm may be
represented in many ways

– Flow chart

– Pseudocode (English-like syntax using primitives that most
programming languages would have)

– A specific program implementation in a given
programming language

7

Syntax and Semantics
• Programming languages have syntax and semantics

• Syntax: refers to the rules of a language for how it will be expressed and
parsed (decomposed)

– Specific to the language

• Semantics: refers to the meaning of what is written

– Often transcends the language (same concept in many language)

• Example: A sentence

– The syntax refers to the proper grammatical rules for writing a sentence:
capitalize the first word, have a subject and verb, ending with a period, etc.

– The semantics refer to the meaning conveyed by the sentence

• C++ Code Example

– if (<condition>) { <action> } is the syntax.

– The semantics (meaning) is “the action will only be performed if condition is
true”

8

CODE ORGANIZATION AND
SEQUENCE OF EXECUTION

9

Sequence & Executability

• Let's learn a bit more about program
execution by using another language
named Scratch
– http://scratch.mit.edu

• Write a Scratch program to walk forward,
turn right, then walk forward again

• Remember computers need executable
steps
– How far forward?

– Turn right by how much?

http://scratch.mit.edu/

10

Executability

• Scratch handles the syntax by providing a
menu of specific "blocks" that define what the
language allows you to do

– Anything you want to do that doesn't have a
specific block, requires you to compose use
multiple blocks

– Some blocks have certain aspects you can set to
control their behavior.

• Go to the Scratch website, click on Create, and
close the tutorial

• Write a Scratch program to walk forward, turn
right, then walk forward again

• Remember computers and algorithms need
executable steps

– How far forward?

– Turn right by how much?

11

Sequence & Executability

• You must compose a program
from the "menu" of available
blocks

• Create the program shown to the
right and then click the green flag
to the left of the red stop sign

– What happens?

• Click the green flag again

– What happens?

12

Explicit Content

• Computers do only what you tell
them, no more, no less

• What additional details might we
want to instruct the computer?

– Where to start and what direction to
face?

– To provide some delay between steps
• Remember computers execute code very

quickly compared to what a human can
see

13

Big Idea: Sequential Execution

• Notice…

– Program is executed 1 operation at a
time in sequential fashion

– Each operation is ordered (a definite
first, second, third, … operation)

1

2

3

14

Repetition 1

• Computers are good at repeating
tasks quickly

• If we can find repeated structure,
we can use a loop to repeat a set of
actions multiple times

• What actions can we repeat and
how many times to have our cat
friend walk in a square?

1

2

3

<actions>

15

Repetition 2

• Computers are good at repeating
tasks quickly

• If we can find repeated structure,
we can use a loop to repeat a set of
actions multiple times

1

2

3

16

GROUPING CODE IN FUNCTIONS
(AKA BLOCKS)

Only if time allows!

17

Organizing Code - Functions

• Another way to allow reuse
and easy modification is to
give a name to sequence of
code/actions
– Wherever we use the name,

the associated sequence of
code/actions will be execute

• Most programming
languages call these
functions, methods,
procedures, subroutines, etc.

• Scratch calls them "Blocks"

• Create a block named:
WalkForwardAndTurn

18

Organizing Code - Functions

• We can take the
actions in our loop and
drag them to the
definition of
WalkForwardAndTurn

• Then click on "My
Blocks", find your new
block and drag it into
the repeat loop

4
4

19

Sequence of Execution With Functions

• We said we execute sequentially, but
with loops and functions is our code
still executed sequentially (top-
down)?

• No. Loops cause execution to go
back and repeat code and functions
may cause us to jump to a new set of
actions, execute them, and the
return back and resume the main
program

1

2

3

4

5

5a

Do we execute
Sequentially ??

5b

5c

5d

6

7

7a

7b

7c

7d

4

20

Functions & Parameters/Arguments

• Our function "DelayedMove" is useful for the
simple task we gave you to implement, but
what if I wanted to walk in a rectangle?
– We now need to walk different lengths

• Q: What might make it more useful and
"general" so that we could reuse it in the
future more easily?

• A: The ability to generalize how many steps
to take and how long to wait might be helpful
– We call these "input parameters"

• Let's allow different values of steps and the
delay to be input.
– Right click on the WalkForwardAndTurn and choose

Edit

– Click on "Add an Input (number or Text)" once and
give the newly appearing box the name: distance
and the click on "Add an Input" again and give the
new box the name: delay

21

Parameters/Arguments

• Back in the main window, two new
entries "distance" and "delay"

• Drag these in place of the constants
(100 or 1) in the move / wait blocks

• Back in the main program, fill in the
two text boxes with 100 and 1

• How could you modify the main
program only to make the cat walk in a
rectangle of 200 wide and 100 long?

22

C/C++ Program Format/Structure
• Comments

– Anywhere in the code

– C-Style => "/*" and "*/"

– C++ Style => "//"

• Compiler Directives

– #includes tell compiler what other library
functions you plan on using

– 'using namespace std;' -- Just do it for now!

• main() function

– Starting point of execution for the program

– All code/statements in C must be inside a
function

– Statements execute one after the next and
end with a semicolon (;)

– Ends with a 'return 0;' statement

• Other functions

– printName() is a function that can be
"called"/"invoked" from main or any other
function

/* Anything between slash-star and
star-slash is ignored even across
multiple lines of text or code */

// Anything after "//" is ignored on a line

// #includes allow access to library functions
#include <iostream>
#include <cmath>
using namespace std;

// Code is organized into units called functions
void printName()
{
cout << "Tommy Trojan" << endl;

}

// Execution always starts at the main() function
int main()
{
cout << "Hello: " << endl;
printName();
printName();
return 0;

}

Hello:
Tommy Trojan
Tommy Trojan

23

A First Program

• Go to:

– http://cpp.sh

• Enter this program to print "Hello!" five times

• Introduce some syntax errors

• Introduce a semantic error

#include <iostream>
using namespace std;
int main()
{

for(int i=0; i < 5; i++) {
cout << "Hello!" << endl;

}
return 0;

}

C++ syntax requires statement to
end with a semicolon (;) and
grouped by curly braces { }.
Removing one would lead to a
syntax error.

A semantic error is when I tell the
computer to do the wrong thing
but it still meets the correct syntax.
Change "i=0" to "i=1" and see it
print only 4 times rather than the
desired 5.

http://cpp.sh/

