
1

Unit 1

Digital Representation

2

Information Representation

• All information is represented as sequences of
1's and 0's

• Kinds of information

– Numbers

– Text

– Instructions

– Sound

– Image/Video

Main Point: All of these forms of information are represented

as numbers in a computer and manipulated as such.

3

Why 1’s and 0’s

• Modern computer chips are
made from millions of tiny
transistors built on a chip of
silicon (usually)

• A transistor is an electronic
device that acts like a switch
– It can be on or off

– This leads to only 2 values (high or
low voltage) in computer hardware

– 1’s and 0’s are arbitrary symbols
representing high or low voltage

• A single 1 or 0 is known as a bit

Low Voltage
0V

-12V

High Voltage
+5V

+12V

1

0

or

on

off

Transistor Acts as a Switch

This Photo by Unknown Author is licensed under CC BY-SA

https://de.wikipedia.org/wiki/Logische_Schaltung
https://creativecommons.org/licenses/by-sa/3.0/

4

Starting With Numbers

• A single bit can only represent 1 and 0

• To represent more than just 2 values
we need to use
combinations/sequences of many bits

– A byte is defined as a group 8-bits

– A word varies in size but is usually
32-bits

01000001

0 or 1
A bit

An example byte

0101110 11010001 10110101 01110111

An example word

Two bit Combinations

5

Finite Size

This Photo by Unknown Author is licensed under CC BY-SA

• When we humans solve arithmetic
problems, we can just write as many
digits as we want

– If we limited our numbers to 3 digits,
our range would be limited to:

• Computers store bits in fixed-size
units (8-bits, 16-bits, 32-bits, etc.)

– This limits the range of numbers we
can generate and store

• Given n-bits, we can make 2n values

1 0 1 1 0 0 1 0

https://es.wikipedia.org/wiki/S%C3%BCtterlin
https://creativecommons.org/licenses/by-sa/3.0/

6

Unique Numbers

• Computers represent binary numbers using a
fixed number of bits

• Given a fixed number of bits, n, what is the
range of numbers we can make?

4 2

0

If n=3 bits:

0

1

0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

2

If n=2 bits:

0

1

0

0 1

1 0

1 1

If n=1 bit:

1

0

1

= 0

= 1

= 0

= 1

= 2

= 3

= 0

= 1

= 2

= 3

= 4

= 5

= 6

= 7

Given n bits, 2n

numbers can be

made21 = 2 values

22 = 4 values

23 = 8 values

7

Interpreting Binary Strings

• Given a string of 1’s and 0’s, you need to know the
representation system being used, before you can
understand the value of those 1’s and 0’s.

• Information (value) = Bits + Context (System)

01000001 = ?

6510 ‘A’ASCII

"add 1"

Unsigned

Binary system ASCII

systemInstructions

8

Unsigned Binary Number System

• Humans use the decimal number system

– Based on number 10

– 10 digits: [0-9]

• Because computer hardware uses digital
signals with 2 values, computers use the
binary number system

– Based on number 2

– 2 binary digits (a.k.a bits): [0,1]

9

Number System Theory

• The written digits have implied place values
• Place values are powers of the base (decimal = 10)
• Place value of digit to left of decimal point is 100 and ascend

from there, negative powers of 10 to the right of the decimal
point

• The value of the number is the sum of each digit times its
implied place value

digits
place values

Most

Significant

Digit (MSD)

Least

Significant

Digit (LSD)
base

= 8*102 + 5*101 + 2*100 + 7*10-1(852.7)10

10

Binary Number System

• Place values are powers of 2

• The value of the number is the sum of each bit times
its implied place value (power of 2)

base

(110.1)2 =

11

Binary Number System

• Place values are powers of 2

• The value of the number is the sum of each bit times
its implied place value (power of 2)

bits
place values

Most

Significant

Bit (MSB)

Least

Significant Bit

(LSB)
base

(110.1)2 = 1 * 22 + 1 * 21 + 0 * 20 + 1 * 2-1

(110.1)2 = 1*4 + 1*2 + 1*.5 = 4+2+.5 = 6.510

12

Powers of 2

512 256 128 64 32 16 8 4 2 11024

• Might help to memorize the powers of 2

20 = 1
21 = 2
22 = 4
23 = 8

24 = 16
25 = 32
26 = 64

27 = 128
28 = 256
29 = 512

210 = 1024

13

Interpreting Binary Strings

• Information (65) = Bits + Context (Unsigned Binary System)

01000001 = ?

6510 ‘A’ASCII

"add 1"

Unsigned

Binary system
ASCII

systemInstructions

14

Sign

128 64 32 16 8 4 2 1

• Is there any limitation if we only use the powers of
some base as our weights?

– Can't make negative numbers

• What if we change things

– How do humans represent negative numbers?

– Can we do something similar?

64 32 16 8 4 2 1

15

C Integer Data Types

– Integer Types (signed by default… unsigned with optional
leading keyword)

C Type
(Signed)

C Type (Unsigned) Bytes Bits Signed Range Unsigned
Range

char unsigned char 1 8 -128 to +127 0 to 255

short unsigned short 2 16 -32768 to +32767 0 to 65535

int unsigned int 4 32 -2 billion to
+2 billion

0 to 4 billion

long unsigned long 8 64 -8*1018 to +8*1018 0 to 16*1018

16

Text

• Text characters are usually represented with
some kind of binary code (mapping of
character to a binary number such as 'a' =
01100001 bin = 97 dec)

• ASCII = Traditionally an 8-bit code
– How many combinations (i.e. characters)?

– English only

• UNICODE = 16-bit code
– How many combinations?

– Most languages w/ an alphabet

• In C/C++ a single printing/text character
must appear between single-quotes (')
– Example: 'a', '!', 'Z'

http://www.theasciicode.com.ar/

17

Text Strings

• To represent words and sentences we can use
a string of characters

– C++ uses double-quote (") to group the characters
that are part of a string

• Example:
– "Hello\n"

– Each character is converted to ASCII equivalent
• 'H' = 72, 'e' = 101, …

• '\n' = Newline or Line Feed (LF) = Represents the non-printing
character "Enter/Return" and moves the cursor to the start of the
next line

18

DATA STORAGE & COMPUTER
MEMORY

19

Computer Components

• Processor
– Executes the program

and performs all the
operations

• Main Memory
– Stores data and

program (instructions)

– RAM = read and write
but volatile (lose values
when power off)

• Let's look more at
memory

Program

(Instructions)

Data

(Operands)

Output

Devices

Input

Devices

Data

Software

Program

Memory

(RAM)

Processor

Combine 2c. Flour

Mix in 3 eggs
Instructions

Data
Processor

(Reads instructions,

operates on data)

OS

(upon

starting

the app)

20

Memory
• Set of cells that each store a group of bits

(usually, 1 byte = 8 bits)

• Unique address assigned to each cell
– Used to reference the value in that location

• Analogy: Safe-deposit or mail boxes
– Each has an identifying number and a value

stored inside

– The value can be an instruction, a number, a
character, etc. (You the programmer must
know what to expect and how to interpret it!)

11010010

01001011

10010000

11110100

01101000

11010001

…

00001011

0

1

2

3

4

5

1023

Address Data

Memory

Device

http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id=218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q=ram+dimm&svnum=10&hl=en&lr=

21

Memory Operations

• Memories perform 2 operations
– Read: retrieves data value in a

particular location (specified using
the address)
• You, the programmer, must know what

type (integer, character, etc.) that data
is.

– Write: changes data in a location
to a new value

• To perform these operations a
set of address, data, and control
inputs/outputs are used
– Note: A group of wires/signals is

referred to as a ‘bus’
– Thus, we say that memories have

an address, data, and control bus.

11010010

01001011

10010000

11110100

01101000

11010001

…

00001011

0

1

2

3

4

5

1023

11010010

01001011

10010000

11110100

01101000

00000110

…

00001011

0

1

2

3

4

5

1023

2

10010000

Read

Addr.

Data

Control

Addr.

Data

Control

5

00000110

Write

A Write Operation

A Read Operation

22

One At a Time

• Recall that while we see the image of a man, the computer
"sees" a collection of numbers (aka pixels)?

• Now we can understand why
– Every number is stored as bits in memory

– Memory can only be accessed one data value at a time

• This limitation of accessing one value at a time leads to a
fundamental issue of programming: How do we break abstract
tasks into a sequence of "1 at a time" operations?

Image taken f rom the photo "Robin Jef fers at Ton

House" (1927) by Edward Weston

0 0 0 0

64 64 64 0

128 192 192 0

192 192 128 64Individual

Pixels

0000 0000

0000 0000

0000 0000

0000 0000

0100 0000

0100 0000

…

0

1

2

3

4

5

Addr.

Data

0100 0000

0000 0000

1000 0000

6

7

8

23

Exercise

• Show how "cs 102" would be
stored in the memory below
– Use decimal to represent each byte

• How do we indicate the string is
done ("terminated")
– With special NULL character (i.e. 0)

…

0

1

2

3

4

5

6

7

24

Additional Resources

• https://www.youtube.com/watch?v=wgbV6DLVezo&
feature=youtu.be

https://www.youtube.com/watch?v=wgbV6DLVezo&feature=youtu.be

