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Phasor Measurement Unit Change-Point Detection of
Frequency Hurst Exponent Anomaly with Time-to-Event

J. Sia1, E. Jonckheere2,∗, L. Shalalfeh3, and P. Bogdan4,†

Abstract—The objective of this paper is real-time detection of a change-point in the baseline distribution of the frequency signal
generated by Phasor Measurement Units (PMUs) that could indicate potential for voltage collapse, false data injection, or other security
threats. The alarm flags an anomaly event when the cumulative sum (CUSUM) of the log-likelihood departures of the Hurst exponent of
the frequency from its baseline statistic exceeds a threshold set up as a compromise between the conflicting objectives of minimum
detection delay and acceptable False Alarm Rate. As main theoretical contribution, an extra protection layer is developed that provides
an estimate of the time to the alarm event, giving the Transmission System Operator (TSO) or an autonomous agent more time to
deploy proactive measures to avoid large catastrophic system states. The proposed method is illustrated by a retrospective analysis of
the 2012 Indian blackout that reveals that 10-12 minutes before the voltage collapse, a significant increase in the Hurst exponent of the
frequency could have been detected. Conceptually, this shows that PMUs provide significant value towards ensuring autonomous
cognition in the power grid by enabling the abnormal events to be fault-detected in an unsupervised fashion.

Index Terms—Smart grid, frequency anomaly, Hurst exponent, Change-Point Detection
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1 INTRODUCTION AND NOVEL CONTRIBUTIONS

Phasor Measurement Unit (PMU) technology enables a wide
range of applications within the autonomous power grid de-
sign such as state estimation, voltage and transient stability
analysis, oscillation monitoring, event and fault detection
[24], situation awareness, and model validation [8]. In order
to enable the dynamic management of the smart grid for
higher efficiency, resiliency, stability and security, the ability
to detect abnormal events and the change-point concurrent
with abnormality are especially important to prevent volt-
age collapse and power system blackout [11] [12].

Fundamental for endowing the smart grid with au-
tonomous cognitive intelligence is its ability to monitor
and analyze in real-time the mathematical characteristics
of the PMU signals and identify the change-points through
rigorous and robust statistical techniques. Towards this end,
a pioneering effort [27], [29] demonstrated that PMU time
series (consisting of voltage magnitude, phase angle, and
frequency) exhibit long-range memory and fractal charac-
teristics. From a mathematical perspective, this long-range
memory and fractal behavior are evaluated quantitatively
through the Hurst exponent. The Hurst exponent deter-
mines whether the observations are obeying a short-range
memory dynamics (an exponential decay of the autocorrela-
tion function with the lag) or a long-range memory dynam-
ics (a power law decay of the autocorrelation function with
the lag). A Hurst exponent of 0.5 indicates a short-range
memory behavior (implying independence between consec-
utive events). In contrast, the Hurst exponents observed in
the PMU analysis were significantly greater than 0.5 and
demonstrated to have long-range memory behavior [27].
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Moreover, an extension of this work has shown that the
increasing trend in the Hurst exponent of the frequency
time series is a good indicator of the proximity of a power
system to blackout and thus can be used as an early warning
signal [28] [29] [31]. These prior research efforts not only
offer novel ways, next to the ROCOF (Range Of Change Of
Frequency), for power systems operators to detect imminent
danger given the PMU frequency time series, but also enable
new mathematical and algorithmic strategies to monitor the
state of the grid and predict the chance of an abnormal event
with potentially catastrophic implications in real time.

Starting from the above-mentioned mathematical char-
acteristics of the PMU data and with the goal of en-
abling mathematical strategies for designing an autonomous
power grid, we propose as in [2] a novel and robust
change-point detection (CPD) strategy capable of detecting
frequency anomalies and the danger of a blackout ahead of
time such that proactive measures can be taken. Essentially,
CPD continuously monitors the departure of the signal from
its baseline Hurst exponent characteristic and constructs a
cumulative statistic that triggers the alarm if it crosses a
threshold consistent with an acceptable false alarm rate.

From a formal statistical point of view, the situation
where the frequency follows its “baseline Hurst exponent
characteristic” is referred to as Null Hypothesis. From that
perspective, a false alarm is a Type I error, that is, the Null
Hypothesis is rejected when it is valid.

1.1 Contributions

In summary, we make the following novel contributions:
• The unique feature of the detection is that it is based

on an anomaly in the Hurst exponent of the PMU
frequency signal.

• The CUSUM approach is proposed in contrast with the
Bayesian approach [2].
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• The CUSUM algorithm is combined with an Expecta-
tion Maximization (EM) estimate of the current, pos-
sibly abnormal, Hurst exponent density parameter for
which the data is a sufficient statistic.

• The CPD theory is shown to be amenable to the Itô
calculus formulation for estimating the distribution of
the time-to-event and its mean, where “event” is meant
to be threshold crossing.

• The proposed CPD algorithmic detection strategy is
evaluated on the real PMU dataset of the Indian 2012
blackout, which demonstrates that the blackout could
have been predicted approximately 12 minutes in ad-
vance.

1.2 New results relative to earlier versions
The present paper is an expanded version of [31] with the
following main additions:
• The chief experimental difference is that, here, the

PMU observation windows of the Indian blackout have
been spaced out to make the Hurst exponents feeding
the CUSUM algorithm independent, while in [31] this
theoretical requirement was disregarded. Moreover,
a comparison of the cases of overlapping and non-
overlapping, “spaced out,” windows has been added
(see Fig. 2 and Sec. 5.3).

• A significant addition compared with [31] is the evalua-
tion of the time-to-event, that is, a continuously updated
unbiased estimate of the time it would take for the
alarm to ring should the present trend continue. This is
an additional feature on top of the sole reliance on the
threshold crossing alarm that might flag an anomaly
when it might already be too late to respond.

• Another addition is the histogram of the time-to-event
under the initialization CUSUM = 0. This distribution
is instrumental for the Type I error analysis.

This last item, along with the accrued level of math-
ematical rigor necessary to derive the time-to-event, has
prompted us to focus here on the PMU applications while
providing only sketches of the mathematical technicalities
and their proofs, relegating the details to a companion
paper [32].

2 CHANGE-POINT DETECTION

2.1 Fundamentals
Consider an i.i.d. sequence {Xk}nk=1 with “normal” regime
probability density function (PDF) p0 from k = 1 up to
and including k = λ − 1, and with “abnormal” PDF p1
as of k = λ up to and including n. Change-Point Detection
(CPD) endeavors to find the change-point λ in the fastest
possible way subject to an acceptable false alarm rate. There
is a vast literature on the subject (see [3] and references
cited therein), which can be partitioned into, on the one
hand, the Shiryaev (Bayesian) procedure [30] and, on the
other hand, Page’s CUmulative SUM (CUSUM) (minimax)
procedure [20]. In the Shiryaev procedure, λ is assumed to
have an a priori distribution and the goal is to minimize
the expected detection delay subject to a false alarm rate.
In the CUSUM procedure, λ is deterministic, but unknown,
and the goal is to minimize the worst case detection delay

subject to an acceptable false alarm rate. Here we follow the
CUSUM, consistently with the early work on application of
CPD to security problems [4], [13], [26].

Regarding the Bayesian procedure, an evaluation of its
cognitive intelligence implementation for detecting anoma-
lies in the µPMU current magnitudes is available in [2]. The
procedure works best with spatial anomalies [2, Table 2].
Here, we restrict ourselves to temporal rather than spatial
anomalies.

Given a change-point λ, let Pλ denote the probability
measure defined as p0 on {Xk}λ−1k=1 and p1 on {Xk}nk=λ. Let
Eλ be the corresponding mathematical expectation. Let Ep0,1
be the mathematical expectation relative to the probability
density p0,1 on {Xk}nk=1. Note that E∞ = Ep0 .

The Null Hypothesis H0 that there has been no changes
from λ up to and including n is rejected when the log-
likelihood ratio CUSUM statistic,

Znλ =
n∑
k=λ

log
p1(xk)

p0(xk)
, (1)

takes “too large” values. As opposed to the Bayesian pro-
cedure, the premise of the CUSUM is to consider the above
statistic for the worst possible λ. Moreover, for the same
reason as making the detection robust, the statistic is reset
to 0 in case it takes negative values1:

Un =

{
max

0≤λ≤n
Znλ

}
+

, (2)

where {z}+ = max{0, z}. The alarm is triggered to indicate
that H0 is rejected when Un ≥ h, where the threshold h
is set up to compromise between False Alarm Rate and
detection delay.

The statistic Un can be put in recursive form as follows:

Un+1 =

{
max

0≤λ≤n+1

(
Znλ + log

p1(xn+1)

p0(xn+1)

)}
+

=

{
max

{
Un + log

p1(xn+1)

p0(xn+1)
, log

p1(xn+1)

p0(xn+1)

}}
+

.

The first argument of the max{·, ·} is the case where the
maxλ is reached for 0 ≤ λ ≤ n while the second argument
is the case where the maxλ is reached for n+ 1. Since Un is
forced to be nonnegative, the first term in the argument of
max{·, ·} is greater than or equal to the second. Hence, the
recursion:

Un+1 = max

{
0, Un + log

p1(Xn+1)

p0(Xn+1)

}
, U0 = 0. (3)

The decision that there has been a change is taken at the first
time τ that the CUSUM statistic Un equals, or goes above,
the threshold h:

τ(h) = min{n : Un ≥ h}. (4)

To derive the FAR, assume that, while p0 prevails, Uk <
h for 0 ≤ k < n and Un ≥ h, hence a false alarm. The

1. Here, the exposition is simplified relative to the traditional one
to avoid the formal argument justifying the reset of the recursive
algorithm (3) to 0 in case Un+1 takes negative values [3, §2.2]. Another
reason for this is to prepare the ground for simultaneous detection and
identification of p1.
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expected time from U0 = 0 to the false alarm is

TFA(h) = Ep0(τ(h)|U0 = 0).

The False Alarm Rate, confronted with its admissible upper
bound, is

FAR(h) =
1

TFA(h)
≤ FAR. (5)

As proved in [32], Ep0(τ(h)) is monotone decreasing with
h. Therefore, the threshold is selected as h = min{h :
Eq. (5) holds}. With this threshold, the Average Detection
Delay is

ADDλ = Eλ(τ (h)− λ : τ (h) ≥ λ).

This CPD minimizes ADDλ subject to FAR(h) ≤ FAR.

2.2 Novelty: time to alarm event

In the time to false alarm, the initial condition was set as
U0 = 0. Assume now that, at some time m before the alarm,
Um = x < h. Resetting m to 0, the time-to-event is defined
as

T (x) = Ep0
(
τ(h)|U0 = x

)
,

a generalization of TFA.

2.3 Itô connection

To acquire an early intuitive understanding of how the
algorithm works—and to connect with Itô calculus—let p0,1
be Gauss-distributed as N (µ0,1, σ

2); in other words, the
abnormality is a mere change of the mean, keeping the
variance unchanged to simplify. It is then easily verified that

Un+1 =

{
Un − (µ0 − µ1)2

2σ2
+
µ1 − µ0

σ

(
Xn+1 − µ0

σ

)}
+

.

(6)
The intuitive idea is that Un+1 is the CUSUM of the
deviation of the data Xn+1 from what one would ex-
pect of the data under normal circumstances, that is, µ0.
The Null Hypothesis is tacitly introduced here by setting
E(Xn+1−µ0) = 0. Also observe the less intuitive drift term
−(µ0 − µ1)2/2σ2.

During a reflection-free phase (no resetting to 0), assum-
ing that Xn ∼ p0, this process will be rewritten as

Un+1 = Un + b+ sV n+1, U0 = 0, (7)

where

b = − (µ0 − µ1)2

2σ2
, s =

µ1 − µ0

σ
,

V n+1 =
Xn+1 − µ0

σ
⇒ V n+1 ∼ N (0, 1).

(8)

It should already be clear from Eq. 7 that it is natural
to approximate the CPD statistic between reflection and
absorption with an Itô process:

dU t = β(U t)dt+ σ(U t)dBt, U0 = x ∈ D, (9)

where the initial condition x is extended to the domain
D = (0, h). Identification of the discrete and continuous
time processes yields

β dt = b, σ2 dt = s2, (10)

where dt is the inverse of the sampling rate. The relation-
ship between the drift terms should be obvious; on the
other hand, the identification of the incremental processes
requires the counter-intuitive feature E(dB)2 = dt of the Itô
process.

Conversely and somewhat more formally, this identi-
fication can be justified by the Euler-Maruyama [16] and
the Milstein [18] methods. The Euler-Maruyama method
applied to (9) resembles closely the standard Euler method
for ODEs but takes into account the extra stochastic term:

Un+1 = Un + β(tn, U
n)∆t+ σ(tn, U

n)∆Bn. (11)

For the Gaussian p0 and p1 cases, the recursive form of the
CUSUM change-point detection as stated in (6) resembles
closely the Euler-Maruyama discretization expression in
(11). Similar to (10), we have

β(tn, U
n)∆t = b, σ(tn, U

n)
√

∆t = s. (12)

Meanwhile, Milstein’s method is the second-order numer-
ical approximation for a stochastic differential equation
(SDE):

Un+1 = Un + β(tn, U
n)∆t+ σ(tn, U

n)∆Bn+

1

2
σ(tn, U

n)
∂σ(tn, U

n)

∂U
[(∆Bn)2 −∆t].

(13)

Note that from Itô’s formula, we have the relation between
the Brownian motion and time increments as dB2

n = dt.
For the simulation, we use ∆Bn = zn

√
∆t, where zn

is sampled from a standard normal distribution N (0, 1).
Interestingly, note that for state-independent noise, i.e.
∂σ(tn, U

n)/∂U = 0, the two methods results in the same
discretization solution.

2.4 Unknown “abnormal” density p1

While it is fair to assume that the “normal” regime density
p0 is known, the same cannot be said for the “abnormal”
regime density p1. The latter is modeled as a distribution
fθ(x) parameterized by θ, and θ is adjusted consistently
and efficiently with a random sampling x = {xi} of p1.
Efficiency is the concept of sufficient statistic. A statistic∑
i S(xi) is said to be sufficient for θ if the conditional dis-

tribution fθ(x|s) of the observations given s =
∑
i S(xi) is

independent of θ; in other words, all pertinent information
regarding θ is embedded in the sufficient statistic.

It is convenient to assign p1 the general Koopman-
Darmois exponential family of densities [6], [14]

fθ(x) = g(x) eθS(x)−A(θ), (14)

where S(x) defines a sufficient statistic, θ is the natural
parameter, andA(θ) is a strictly upward concave normaliza-
tion factor to make fθ(x) a probability measure. For reason
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explained soon, we will choose the Weibull distribution,
which with fixed shape β and adjustable scale η parameters,

fθ(x) = β
η

(
x
η

)β−1
e−( xη )

β

, (15)

is a Koopman-Darmois distribution with sufficient statistic
S(x) = xβ and natural parameter θ = −1/ηβ .

2.5 Novelty: Simultaneous detection and estimation

In case of an imprecisely known abnormal density, instead
of (2), we proceed from the double maximization [3, (§2,
§4.3.1)],

Un =

{
max

0≤λ≤n
max
θ
Znλ (θ)

}
+

, (16)

where in the definition of Znλ (θ), p1 is replaced by fθ . Again,
in this “worst case” scenario, especially in case of stealthy
attack [24] [31] [34], another justification for maxθ is to
assume that the density fθ is the worst possible given the
data. Whatever the motivation, the detection rule remains
Un ≥ h, but with Un now defined by (16) instead of (2).

The problem is that this approach does not easily lend
itself to a recursive formulation. Indeed, it is easily seen that
the heuristically defined statistic

Ûn+1 = max

{
0, Ûn + max

θ
log

fθ(Xn+1)

p0(Xn+1)

}
, Û0 = 0 (17)

would only dominate the true statistic in the sense that
Ûn ≥ Un and give overly conservative results with high
false alarm rate, because the maxθ is taken over every log-
likelihood ratio rather than the sum of them. A remedy is to
smooth over the arg maxθ by combining the last one at time
n+ 1 with the previous ones:

Ũn+1 = max

{
0, Ũn + log

fθ̃n+1(Xn+1)

p0(Xn+1)

}
, Ũ0 = 0,

θ̃n+1 = κθ̃n + (1− κ) arg max
θ

log
fθ(Xk+1)

p0(xk+1)
,

(18)

where 0 < κ < 1 is some smoothing gain.
Among the Koopman-Darmois distributions, the

Weibull distribution has been retained since it is the
distribution that needs the least amount of data to be
correctly identified [7]. Therefore, p1 will be correctly
identified in the shortest amount of time, which is crucial in
such a security application where time is the essence.

2.6 Time complexity

The computational complexity of the CUSUM procedure
(3) is constant O(1) at each iteration. When monitoring
for a change-point in the PMU frequency Hurst exponents,
the Hurst exponent calculation by Detrended Fluctuation
Analysis (DFA) calculation is O(N logN), where N is the
length of the time window considered at each iteration.
Hence, the algorithmic strategy can be computed in real
time.

3 TIME-TO-ALARM

Here, we address the mathematical questions that underline
the time-to-event. For the sake of conciseness, proofs are
sketched with details relegated to [32].

Theorem 1. The average time to the threshold crossing event,
T (x) := Ep0(min{t |U t > h} |U0 = x), is given by the
following ordinary differential equation (ODE) subject to mixed
Dirichlet-Neumann boundary conditions [22, §1.2], [33, §8.2]:(

1

2
σ2 ∂

2

∂x2
+ β

∂

∂x

)
T (x) = −1, (19a)

T (h) = 0, (Dirichlet), (19b)
∂T (x)

∂x

∣∣∣∣
x=0

= 0, (Neumann). (19c)

The complete proof is available in [32], but to make
the exposition somewhat self-contained, we provide an
outline. Following in the footsteps of [5], let p(x, y, t) be
the transition probability from the initial condition density
p(U0) = δx(U0), a unit mass at x, to the density at a future
time p(U t = y). As is well known, p is solution to the
Fokker-Planck or Kolmogorov Forward Equation (KFE) [9,
§X.5], [19, §8, p. 153]. From this transition, it is easily seen
that

∫ h
0 p(x, y, t)dy =: π(x, t) is the probability that the

process starting at x has not yet reached h by time t.
From there, the probability that the CUSUM process crosses
the threshold between times t and t + dt is seen to be
π(x, t)−π(x, t+dt) = −dπ. From there on, using integration
by part and limt→∞ p(x, y, t) = 0, we get

T (x) = E
−∂π∂t

(t) (20a)

=

∫ h

0

(∫ ∞
0

p(x, y, t)dt

)
︸ ︷︷ ︸

−G(x,y)

dy. (20b)

G(x, y) is the Green function of the Kolmogorov equation
also subject to Dirichlet-Neumann boundary conditions:(

1

2
σ2 ∂

2

∂y2
− β ∂

∂y

)
G(x, y) = δ(x− y), (21a)

G(x, h) = 0, (Dirichlet), (21b)
∂G(x, y)

∂y

∣∣∣∣
y=0

= 0, (Neumann). (21c)

From here on, the development departs significantly
from [5]. A delicate argument, developed in details in [32],
shows that, up to a good approximation for small drifts,
G(x, y) depends on the absolute difference of arguments,
that is, G(x, y) = g(|x − y|), where g ∈ W 2,2, the Sobolev
space of twice differentiable square integrable functions [15].
Therefore, G(x, y) = G(y, x) and ∂G/∂y = −∂G/∂x.
Changing the partial differential operators in the Green
function PDE, integrating both sides of Eq. (21)(a) as∫ h
0 (·)dy, and defining T (x) = −

∫ h
0 G(x, y)dy yields the

ODE for T (x). The transfer of the Dirichlet-Neumann con-
ditions from G(x, y) to T (x) is more delicate. Regarding
Dirichlet, G(x, h) = 0,∀x yields G(h, y) = 0,∀y and
thereofore T (h) = 0. Regarding the Neumann condition,
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Fig. 1: (a) Indian blackout frequency time series, (b) scaling (Hurst) exponent time series obtained using the DFA procedure
with 1 min time window and 1 min time shift, (c) autocorrelation, and (d) Ljung-box test for the Hurst exponent time
series.

T (x) =
∫ h
0 G(y, x)dy yields

T ′(0) =

∫ h

0

∂G(y,x)
∂x

∣∣∣
x=0︸ ︷︷ ︸

=0

dy = 0.

Simulation studies of Sec. 5 show that the proposed
approximation is perfectly acceptable.

Corollary 1 ( [32]). The solution to the differential equation for
T (x) over the enlarged domain (−ε, 0) subject to the boundary
condition T ′(−ε) = 0 is given by

T (x) = −2x+ e−
2βx

σ2 σ2c1 − 2βc2
2β

, (22)

where the integration constants c1, c2 are evaluated from the
boundary conditions:

c1 =
1

β
e−

2βε

σ2 , c2 =
2hβ + e−

2β(h+ε)

σ2 σ2

2β2
.

Corollary 2 ( [32]). T (x) is continuous as ε ↓ 0, ∀x ≥ 0.

Finally, setting x = 0 and ε = 0 yields

T (0) =
h

2β

(
2 +

σ2

βh

(
e−

2βh

σ2 − 1
))

. (23)

Upon second order approximation of exp(−2βh/σ2),
the time T (0) to alarm and hence an approximate lower
bound on the threshold are easily found to be

T (0) ≈ h2

σ2
, h ≥ σ√

FAR
. (24)

Remark 1. The proof of Th. 1 is a generalization of [5, Th. 1]
to the case where the drift β is nonvanishing. Moreover, here,
the proof is based on the explicit construction of the transition
probability p(x, y, t), with the limt→∞ p(x, y, t) convergence
different from the one of [5].

Remark 2. The crucial approximation G(x, y) ≈ g(|x−y|) and
its justification in [32] are believed to be new. The passage from
the Dirichlet-Neumann conditions on G(x, y) to those on T (x)
is believed to be new compared with [5].

Remark 3. The crucial approximation can be justified as follows:
Since the medium is isotropic (β and σ independent of U t),
g(|x − y|) is only an approximation of G(x, y) because the

boundary conditions are not symmetric. Because of the negative
drift term, the density p(U t) is “pulled” to the left (the “head”)
while the “tail” of the distribution is less affected and the alarm is
mostly triggered by the tail.

Remark 4. Eq. (23) is available in [3, Eq. 3.1.105], but proved via
moment generating methods. However, here, Eq. (23) is derived
from the general Eq. (22). The latter is of interest for change-point
detection as T (U t) tells the operator in how much time the alarm
is expected to ring.

4 HURST EXPONENT WINDOW OF PMU FRE-
QUENCY TIME SERIES

Prior works show that PMU time series exhibit long-range
memory and fractal characteristics that are quantified by the
Hurst exponent [27], [29]. Moreover, an increasing trend in
the Hurst exponent of the frequency is a good indicator,
consistently with the ROCOF [29], of proximity of power
system to blackout [28].

Detrended Fluctuation Analysis (DFA) [21] is one of the
most reliable and robust methods to calculate the Hurst
(scaling) exponent. The DFA procedure to compute the
Hurst exponent series could lead to correlated and non-
independent Hurst exponent samples especially when the
PMU data windows have a large overlap as in [31]. To
mitigate this issue, we consider reducing the size of the
moving window and minimizing the amount of overlap
between consecutive windows.

In the present paper, contrary to [31], the frequency Hurst
exponents have been calculated inside a moving window
of length 3,000 samples (1 minute) and a 1 minute time
shift making the windows non-overlapping and hopefully
generating independent Hurst exponent samples. We apply
the DFA on the frequency series before the 2012 Indian
blackout as shown in Fig. 1(a). The resulting Hurst expo-
nents from the Indian frequency data are shown in Fig. 1(b).
Since we aim to generate i.i.d. samples of Hurst exponents
by reducing the overlap between windows, this results in
a much smaller amount of Hurst exponent samples (56
samples). On the positive side, Fig. 1(c) shows that the au-
tocorrelation function of the Hurst exponent series up to 20
samples is within the 95% confidence band (dotted line) for
independence. From the individual autocorrelations, we can
infer that the samples of Hurst exponents are uncorrelated.
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Finally, we use the Ljung-Box test to verify the indepen-
dence of the Hurst exponent samples. The test provides a
more rigorous way to test the autocorrelations at multiple
lags jointly. The Null hypothesis (H0) is that the samples
of Hurst exponent series are uncorrelated and independent.
As shown in Fig. 1(d), the p-values of Ljung-Box statistic are
higher than the significance level of 0.05 (dotted line), so we
cannot reject the Null hypothesis (H0), i.e. we do not have
evidence that the samples are autocorrelated.

5 CHANGE-POINT DETECTION OF PMU FRE-
QUENCY ANOMALY

In this section, we will utilize the derivation from Sec. 2
and empirical results from Sec. 4 to implement the change-
point detection on the PMU frequency data obtained before
the Indian blackout, which occurred on the 30th and 31st of
July 2012 [1]. Fig. 2(i-a) shows that the frequency time series
collected before the blackout has a length of 167,600 samples
(sampled at 50 samples/second) and spans approximately
56 minutes.

On the same Figs. 2(i-d),(iii,d) we also plot the time-to-
alarm. It is noted that this time-to-alarm, T (Un), is slaved
on Un and reset to T (0) when Un is reset to 0. Also note
that, for the sake of the argument, Un is allowed to run
beyond the threshold h where it is observed that T (Un) <
0, where a negative time-to-event means that the threshold
has already been crossed. As long as the threshold has not
been crossed, T (Un) > 0 as it should be. This indicates that,
while theoretically T (Un) is just an approximation of the
time-to-event, it is still accurate for the application being
considered.

We follow Sec. 4 in calculating the Hurst exponent of the
frequency data using DFA procedure with non-overlapping
moving window length of 3000 samples (1 minute) and also
a shift of 1 minute as shown in Fig. 2(i-b).

5.1 Empirical estimate for pre- and post-distributions

In [31], statistical tests on the PMU frequency time series in
EPFL campus grid show that the Gaussian distribution is the
best distribution to fit the histogram of the Hurst exponent
of the frequency during normal operations.

From Sec. 4, we estimate the pre- and post-event dis-
tributions, p0 and p1, as Gaussian distributions based on
the calculated Hurst exponent time series as shown Fig.
2(i-b). Since the true change-point occurrence for the 2012
Indian blackout is not known, we divide the time series
into two regimes of operations by setting the cutoff at t
= 40 min. (or 16 mins. before the blackout). We estimate
empirically the means and standard deviations of the pre-
and post-event distributions: the pre-event regime is assume
to be within t ∈ [0, 40] with (µ0, σ0) = (1.5487, 0.1681); the
post-event regime is assume to be within t ∈ [40, 56] with
(µ1, σ1) = (1.7116, 0.1758).

From Sec. 2.3, we follow the recursive change-point de-
tection formulation (6) for the Gaussian p0 and p1 case. Fig.
2(i-c) shows the change-point CUSUM statistic Un at each
time step based on the estimated p0 and p1 distributions. For
an acceptable false alarm rate of FAR = 0.1, the threshold
value is set at h = 2.05 with the U statistic crossing at

n = 41 min. (15 mins. before the blackout). Fig. 2 (i-d) shows
the mean time to alarm event T (Un).

The setting up of the threshold value to raise the alarm
and the calculation of T (Un) are discussed in more detail at
the next section.

5.2 Threshold for False Alarm Rate—Itô approach

TABLE 1: Summary of the crossing times corresponding to
different admissible false alarm rates FAR.

FAR threshold h crossing time τ
0.2 1.5990 37 min.
0.1 2.0470 41 min.
0.01 3.9499 47 min.
0.001 6.1674 49 min.

Here, with the objective of deriving the FAR, we follow
Section 3 and compute the expected value of the first time
the Itô process (9), starting from U0 = 0, properly scaled
as a model of (7), crosses the threshold h. Starting from (24)
and using the identification recipes (10), and (8), it is found
that

Ep0(τ(h)) := T (0) = 2

(
σ

µ1 − µ0

)2 (
eh − (h+ 1)

)
dt

≈
(

σ

µ1 − µ0

)2

h2 dt. (25)

To calculate the appropriate threshold h, we follow the
relationship (5) between the admissible upper bound for the
false alarm rate FAR and the first crossing time of the Itô
process Ep0(τ(h)).

Using the same setup as in Sec. 5.1, Fig. 2(ii) shows the
threshold values and the corresponding threshold crossing
times for different false alarm rates. A larger FAR results
in a lower threshold h and vice versa. In agreement with
intuition, choosing a larger FAR results in a faster alarm
trigger but at the cost of higher incidence of false alarms.
Conversely, setting a lower FAR results in smaller chances
of false alarm triggers but at the cost of a slower response to
a true alarm. A summary of results is shown in Table 1.

5.3 Comparison between overlapping and nonoverlap-
ping moving windows for DFA

The DFA procedure uses a PMU moving time window to
estimate the Hurst exponent samples. The chosen window
parameters (window length, number of box sizes per win-
dow, and window time shift) affect the accuracy of the Hurst
exponent estimate. A longer window length and greater
number of boxes generally increase the accuracy of the
Hurst exponent estimate but at the cost of higher computa-
tional complexity. Additionally, choosing a smaller window
time shift generates more data samples. If the window time
shift is chosen too small compared to the window length,
this could lead to overlapping moving windows that could
lead to correlated data samples.

The results in Sec. 5.1 are obtained using non-
overlapping moving window setup for the DFA procedure
(as explained in Sec. 4) so as to satisfy the i.i.d. assumption
on the data samples. We now compare this result to a DFA
setup with overlapping moving window of length 49,400
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(i) (ii) (iii)

Fig. 2: 2012 Indian blackout change-point detection on the frequency Hurst exponent data. (i) Hurst exponent data obtained
from non-overlapping time windows (1 min. window and 1 min. time shift), upper admissible false alarm rate FAR = 0.1
and h = 2.05 (red dashed-line), (ii) comparison of different FAR values and corresponding h values (dashed-lines), (iii)
Hurst exponent data as obtained in [31] from an overlapping moving window of length 49,400 samples (16.5 minutes) and
shift of 100 samples (0.033 mins), FAR = 0.1 and h = 9.194 (red dashed-line).

samples (16.5 minutes) and shift of 100 samples (0.033
mins) as in [31]. Fig. 2(iii-b) shows the Hurst exponent
samples given the overlapping window setup. Similarly, the
estimated pre- and post- distribution parameters in [31] are
(µ0, σ0) = (1.5722, 0.0198) and (µ1, σ1) = (1.7327, 0.0582).
Figs. 2(iii-c) and (iii-d) show the change-point CUSUM
statistic Un and the mean false alarm trigger time T (Un),
respectively, at each time step based on the estimated p0
and p1 distributions. Choosing the same false alarm rate
at FAR = 0.1, the threshold value is at h = 9.19, which
resulted in no false alarms. The alarm is raised at t = 44.07
min. (11.93 mins. before the blackout).

The non-overlapping window setup with dt = 1 min.
resulted in significantly fewer data samples (n = 56) com-
pared to the overlapping window setup with dt = 0.033
min. which generated 1,190 samples. As a result, the case
of non-overlapping window has a higher volatility in the
Hurst exponent samples and the change-point statistic
(compare Figs. 2(i-b) and (iii-b) and their corresponding
standard deviations).

Comparison between Figs. 2(i) and 2(iii) makes a strong
case for the CUSUM approach. In case of overlapping win-
dows, the increase of the Hurst exponent is visually obvious
and the CUSUM is just confirming this. However, in case
of nonoverlapping windows, the trend in Fig. 2(i)(b) is not
obvious but revealed by CUSUM in Fig. 2(i)(c).

Using the same admissible false alarm rate FAR = 0.1
for both cases, the non-overlapping window setup has the
crossing time occurring at t = 41 min. (compared to 44.77
min. for the overlapping window case). While it is worth
noting that the non-overlapping case results in earlier true
alarm trigger and no false alarm triggers, there are a few
instances that the change-point statistic has come close to
the threshold. In addition, the mean false alarm trigger time
T (0) is lower for the non-overlapping case.

5.4 Unknown post-distribution

For this case, the post distribution p1 is assumed to be
unknown and is assigned the Weibull distribution with
natural parameter θ = −1/ηβ as suggested in Sec. 2.4, Eq.

(15). For a fixed shape β, the distribution is parameterized
only by the scaling η as fη(x), where η is related to the mean
as E(x) = ηΓ(1 + 1/β).

Given this assignment, we use the recursive form of the
change-point algorithm for the simultaneous detection and
estimation as defined by (18). For the Weibull distribution,
the arg maxη term in (18) results in

arg max
η

log
fη(X)

p0(X)
= arg max

η
fη(X).

Taking the derivative with respect to η and equating to zero
results in a simple expression ηmax = x, where x is the
numerical value recorded. As such, η is re-adjusted every
single step, which creates some oscillation in the statistic,
which can be smoothed over by virtue of (18)(b).

Fig. 3(i) shows the PDF plots for the empirical estimates
for p0 and p1, as used in Sec. 5.1, and the unknown PDF
taking the form fη . By setting ηmax = X , the variable rather
than the numerical value, and plugging this in fη(X) yields
(β/X) e−1, the envelope of the Weibull distributions.

One can choose the shape parameter β so that the
distributions have higher peak values. However, setting β
too high can lead to higher false alarm rates. Additionally,
the range of values for the scaling parameter η, related to
the mean, is limited to a minimum value of 1.65. By setting
the minimum value for η, this ensures that fη would not
completely overlap with the known pre-event distribution
p0.

Fig. 3(ii) shows the change-point statistic Un and the
mean false alarm trigger time T (Un) for the simultaneous
detection and estimation algorithm with β = 7 for the shap-
ing parameter for the non-overlapping window case. For
the same threshold value h = 2.05, the algorithm resulted
in 2 false alarms before it correctly raised the alarm at t = 41
min. (15 mins. before the blackout). Similar simulations were
run for higher values of β and these resulted in an even
higher numbers of false alarms. Setting β too low results in
more sluggish response in raising the true alarm.
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(i) (ii)

Fig. 3: (i) Pre- and post-event Gaussian distributions p0
and p1, estimated post-event family of Weibull distributions
fη(x) with β = 7, and envelope of Weibull distributions.
(ii) Change-point detection for simultaneous detection and
estimation using p0 and fη as in (i) with FAR = 0.1 and
h = 2.05 (red dashed-line).

5.5 First hitting time distribution for Type I error analy-
sis

The probability that the data is misclassified as a rejection
of the Null Hypothesis is computed from the distribution
of the first threshold hitting time T (0) consistently with
an acceptable significance level. Should the data of the
threshold crossing time generated by the CUSUM process be
much to the left tail of pT (0), the probability of an erroneous
rejection of the Null Hypothesis, a Type I error, is very low.

We conduct a Monte Carlo experiment to estimate em-
pirically the first hitting time distribution [10] by running
the process for m = 10000 trials and observing the in-
stance that the change-point statistic Un hit the threshold
h for the first time. Experiment 1 resembles the setup for
the overlapping Hurst exponent time window case with
finer time steps [31]; the system parameters are as follows:
sampling time dt = 0.033, µ0 = 1.5722, µ1 = 1.7327,
σ = 0.198; the process drift and diffusion coefficients are
b = −0.33 and s = 0.81 with a corresponding theoretical
mean escape time T (0) = 9.43 as calculated from (23). The
experimental mean escape time is 25.30. Figure 4(i) shows
the first hitting time distribution for h = 4.6 and the five
best distribution fittings. Both the gamma and exponential
distributions result in the best fit (based on the SSE, AIC
and BIC criteria). The resulting exponential distribution has
mean parameter µ = 25.30 [24.81, 25.80]. Additionally, we
perform the 2-sample Kolmogorov-Smirnov (KS) test [17]
between the empirical distribution and sampled exponential
distribution. The resulting p-value of 0.2185 failed to reject
the null hypothesis that the two sample distributions come
from the same distribution.

We perform another Monte Carlo test (Experiment 2)
for a larger sampling time dt = 1 resembling the non-
overlapping time window case with the following system
parameters similar to Sec. 5.1: µ0 = 1.5487, µ1 = 1.7116,
σ = 0.1681; the resulting process drift and diffusion coeffi-
cients are b = −0.47 and s = 0.97 with a corresponding the-
oretical mean escape time T (0) = 10.05. Figure 4(ii) shows
the first hitting time distribution for h = 2.05 with an aver-
age escape time of 41.25. The exponential and chi-squared
are the best distribution fit. The resulting exponential distri-
bution has mean parameter µ = 41.25 [40.45, 42.07].

(i) Experiment 1 (ii) Experiment 2

Fig. 4: First hitting time histograms and fitted distributions
for Experiments 1 & 2. The exponential distribution is the
best fit for both experiments.

6 CONCLUSION

In this paper, the change-point detection of PMU frequency
anomalies that could indicate imminent voltage collapse
was explored. More specifically, the detection is based on
the CUSUM of the log-likelihood ratios of the deviations
of the Hurst exponent from its baseline statistic. The case
of unknown abnormal distribution of the Hurst exponent
was dealt with by simultaneously running the CUSUM and
identifying the scale parameter of the Weibull distribution
model. In addition to the alarm triggered when danger is
imminent, the operator is provided with a time to the alarm
event. Retrospective analysis of the 2012 Indian blackout
data has shown that the change-point detection algorithm
could have anticipated the voltage collapse as early as 12
minutes before the blackout event.

The method could be improved and extended in several
directions. Instead of artificially making the Hurst samples
i.i.d. by spacing the observations with the drawback of a
reduced data set, an Auto-Regressive (AR) model of the
Hurst exponent sequence would be more appropriate. Also
left for further research is the change-point detection of false
data injection [23], [24], [25] or other security threats.

Lastly, the Type II error analysis could be developed
based on the histograms of the distribution of the first
hitting time distribution when the data driving the CUSUM
is drawn from fθ rather than p0.
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Sabatier, Toulouse, France, in 1975, and Ph.D.
in Electrical Engineering from the University of
Southern California in 1978. In 1973-1975, he
was a Research Fellow of the European Space
Agency. In 1979, he was with the Philips Re-
search Laboratory, Brussels, Belgium. In 1980,
he returned to the University of Southern Cali-

fornia, where he is a Professor of Electrical Engineering and Mathe-
matics, a member of the Centers for Applied Mathematical Sciences,
and a member of the Quantum Information Science and Technology
Center. He is a Life Fellow of the IEEE. His research interests include
conventional versus quantum control, adiabatic quantum computations,
wireless networking, and the power grid.

Laith Shalalfeh received the B.S. degree in
electrical engineering from the University of Jor-
dan in 2009, the M.S. and Ph.D. degrees in elec-
trical engineering from the University of South-
ern California in 2012 and 2017, respectively.
Then, he joined the German Jordanian Univer-
sity, where he is currently an Associate Profes-
sor with the Energy Engineering Department.
His research interests include electric vehicles,
load modeling, voltage stability, phasor mea-
surement units, and smart grid.



10

Paul Bogdan received the PhD degree from
Carnegie Mellon University. He is a Jack
Munushian Early Career Chair associate profes-
sor with the Ming Hsieh Department of Electrical
and Computer Engineering, University of South-
ern California. His research interests include the
cyber-physical systems, control of complex time-
varying networks, modeling and analysis of bi-
ological systems and swarms, new control al-
gorithms for dynamical systems exhibiting mul-
tifractal characteristics, modeling biological or

molecular communication, fractal mean field games, machine learning,
artificial intelligence, performance analysis and design methodologies
for manycore systems. His work has been recognized with a num-
ber of awards and distinctions, including the 2019 Defense Advanced
Research Projects Agency (DARPA) Directors Fellowship, the 2018
IEEE CEDA Ernest S. Kuh Early Career Award, 2017 DARPA Young
Faculty Award, 2017 Okawa Foundation Award, 2015 National Science
Foundation CAREER Award, 2012 A.G. Jordan Award from Carnegie
Mellon University for an outstanding PhD thesis and service, several
best paper awards, including the 2013 Best Paper Award from the 18th
Asia and South Pacific Design Automation Conference, 2012 Best Paper
Award from the Networks-on-Chip Symposium, 2012 D.O. Pederson
Best Paper Award from IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2012 Best Paper Award from the
International Conference on Hardware/Software Codesign and System
Synthesis, and the 2009 Roberto Rocca PhD Fellowship.


	Introduction and Novel Contributions
	Contributions
	New results relative to earlier versions

	Change-point Detection
	Fundamentals
	Novelty: time to alarm event
	Itô connection
	Unknown ``abnormal" density p1
	Novelty: Simultaneous detection and estimation
	Time complexity

	Time-to-Alarm
	Hurst exponent window of PMU frequency time series
	Change-Point Detection of PMU Frequency Anomaly
	Empirical estimate for pre- and post-distributions
	Threshold for False Alarm Rate—Itô approach
	Comparison between overlapping and nonoverlapping moving windows for DFA
	Unknown post-distribution
	First hitting time distribution for Type I error analysis

	Conclusion
	References
	Biographies
	Jayson Sia
	Edmond A. Jonckheere
	Laith Shalalfeh
	Paul Bogdan


