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In this paper, a new electromyographic phenomenon, referred to as Bursting Rate

Variability (BRV), is reported. Not only does it manifest itself visually as a train of short

periods of accrued surface electromyographic (sEMG) activity in the traces, but it has a

deeper underpinning because the sEMG bursts are synchronous with wavelet packets

in the D8 subband of the Daubechies 3 (db3) wavelet decomposition of the raw signal

referred to as “D8 doublets”—which are absent during muscle relaxation. Moreover, the

db3 wavelet decomposition reconstructs the entire sEMG bursts with two contiguous

relatively high detail coefficients at level 8, suggesting a high incidence of two consecutive

neuronal discharges. Most importantly, the timing between successive bursts shows

some variability, hence the BRV acronym. Contrary to Heart Rate Variability (HRV), where

the R-wave is easily identified, here, time-localization of the burst requires a statistical

waveform matching between the “D8 doublet” and the burst in the raw sEMG signal.

Furthermore, statistical fitting of the empirical distribution of return times shows a striking

difference between control and quadriplegic subjects. Finally, the BRV rate appears to

be within 60–88 bursts per minute on average among 9 human subjects, suggesting a

possible connection between BRV and HRV.

Keywords: Heart Rate Variability, electromyogram, bursting activity, Akaike and Bayes information criteria, return

time distribution, Daubechies, doublets

1. INTRODUCTION

Under some conditions, the surface electromyographic (sEMG) activity recorded along the
paraspinal muscles of human subjects shows some standing wave properties, even though the trunk
does not manifest a visually obvious movement (Jonckheere et al., 2010; Martin del Campo and
Jonckheere, 2016). Such conditions can be reproduced by putting the research subject in the prone
position and applying light pressure at some specific “gateway” points of the spine (usually the neck
and the coccyx) to elicit the oscillation.

The motion usually starts in a chaotic fashion at the distal ends of the spine, propagates
caudally, until it settles in a standing wave pattern, which can undergo “period halving bifurcations,”
transitioning away from chaos (Martin del Campo and Jonckheere, 2017). At that stage, no further
digital stimulus is required, indicating that the rhythmic movement is innervated by a Central
Pattern Generator (CPG) (Marder and Calabrese, 1996; Marder and Bucher, 2001), as argued
in (Jonckheere et al., 2010). A further confirmation of the CPG hypothesis is that two quadriplegic
subjects have been able to sustain the so-called spinal wave (Jonckheere and Lohsoonthorn, 2004;
Jonckheere et al., 2010; Musuvathy and Jonckheere, 2010).
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Besides CPG, another important aspect of this movement is
coherence at a distance; the antinodes of the wave are indeed in
coherent motion, with a wavelength in the order of ∼1 m, hence
qualifying as coherence at a distance (Farmer, 1998; Farmer et al.,
1998; Kopell, 2000).

The specificity of this CPG-innervated, coherent motion is
confirmed by the Daubechies 3 wavelet decomposition of the
sEMG signal, more specifically, by wavelet packets repeating
themselves in an aperiodic fashion in the D8 subband of the
wavelet decomposition, referred to as “D8 doublets” (Mallat,
1989; Daubechies, 1992).

The appearance of this waveform in both control and
quadriplegic subjects during the spinal wave phenomenon, as
well as its absence when the spinal wave is not sustained,
has suggested that the d8 doublets are a type of biological
marker specific to this phenomenon. This further motivated the
inclusion of quadriplegic patients in the pool of research subjects

FIGURE 1 | Raw paraspinal surface electromyographic signal of a healthy individual, overlaid with its 8-level wavelet transformed sub-signal and its scalogram below

(The level number in the scalogram corresponds to the scale of the discrete wavelet transform dwt of Matlab). Note that the D8 doublet is a precise sequence of (+)

peaks and (−) dips, defined here as the π-κ-ρ-σ -τ sequence because of its similarity with the cardiac cycle. The concordance between the D8 and the burst here

appears naturally without preprocessing. Observe the two D8 coefficients indicating rapid succession of 2 MUAPs.

to confirm that their depleted neuro-skeletal system impacts the
doublet return time.

Since these D8 doublets are reconstructed from two relatively
high details coefficients at level 8 (Figure 1), and due to the
surface electromyography being a superposition of multiple
Motor Unit Action Potential (MUAP) trains (see Cram et al.,
1998, Figures 3, 4), it is still unclear at this stage whether
the observed D8 doublets are double discharges of the same
motor units (see Bawa and Calancie, 1983; Piotrkiewicz et al.,
2013; Mlrowczynski et al., 2015) for further details on the
double discharge phenomenon), or single discharges of two
motor units firing rhythmically one after the other. In either
case, the observed D8 doublet waveforms represent a highly
synchronized rhythmic spiking phenomenon of multiple neurons
that would conform to the definition of an “exceptional doublet”
of Piotrkiewicz et al. (2013, Figure 5B) if two firings are
coming from the same motor unit, “exceptional” in the sense
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of large intradoublet interspike interval. Indeed, the interspike
period of ∼60 ms—here measured peak-to-peak from the D8
doublet waveform—exceeds the conventional limits of 2-20
ms according to the standardization of doublets set by the
American Association of Neuromuscular & Electrodiagnostic
Medicine (The AANEM Nomenclature Committee, 2015).
However, it has been reported in (Piotrkiewicz et al., 2013) that
the standard range of doublets can be exceeded as Piotrkiewicz
et al. (Piotrkiewicz et al., 2013) report exceptional doublets
with 37 ms of intradoublet time in the human soleus muscle.
Furthermore, the Discrete Wavelet Transform (DWT) has also
served to obtain the entire spiking event duration of ∼130 ms
measured from onset to offset of this wavelet waveform at scale
8, which spans the time comprised by two relatively high details
coefficients at this scale (Rodriguez-Carreño et al., 2012, Figure
11).

Besides these early findings, the crucial observation that
launched this research is the near-synchrony between the onsets
of the doublets observed on the D8 traces and the onsets of
the bursts of accrued sEMG activity visible on the raw signal
traces, as shown in Figures 1, 2A. The “nearness” of the time
localizations of the doublets and the bursts is crucial here. Indeed,
by definition of the wavelet decomposition, the repetition of the
DWT frame generating the D8 subband is periodic, while the
sequence of bursts is not. Therefore, some time-shifting of the
raw signal trace is necessary to acquire a goodwaveformmatching
between a specific burst and its D8 doublet. It turns out that this

time-shifting is different from one burst to the other, leading to
a variability of the time interval between successive bursts, which
is referred to as Bursting Rate Variability (BRV).

The adopted wavelet transform technique fits within a broad
range of techniques that aim at accurately localizing in time an
“event,” say R-wave of ECG, by correlating the event waveform
with the mother function of a specific wavelet transform. In
particular, this has been exploited for time-localization of R-wave,
resulting in accurate dynamical modeling of interbeat interval
with application to sleep apnea (Ivanov et al., 1996; Mietus et al.,
2000; Ivanov, 2001).

2. METHODS

2.1. Methods: Control and Quadriplegic
Subjects
For our analysis, a population of 9 human subjects, 7 control
(healthy) and 2 quadriplegic subjects (presenting a total of
∼8,000 doublets), were chosen. The quadriplegic subjects
both had a cervical spinal cord injury at the C5 vertebral
level (Jonckheere et al., 2010; Musuvathy and Jonckheere, 2010).

Before recordings, the subjects had signed the Informed
Consent drafted by the investigators and approved by the
University Park Campus (UPC) Institutional Review Board (IRB)
of the University of Southern California. The subjects were
recruited on the occasions of several meetings. Participation

FIGURE 2 | (A) Raw thoracic surface electromyographic signal (in red) of control subject #4, overlaid with its 8-level wavelet transformed sub-signal (in green) and its

scalogram below (Conventions are the same as in Figure 1). Note that at the first, second, and third bursts the matching between the raw sEMG signal and its 8-level

sub-signal is better than the one at the fourth burst. The recovery of the matching between the fourth burst and its D8 doublet is shown in Figure 3, where different

time delays are applied before wavelet processing. (B) Raw thoracic surface electromyographic signal (in red) of subject #4 (control) time-shifted by 15 ms (in red),

overlaid with its 8-level wavelet transformed sub-signal (in green) and its scalogram below (Conventions are the same as in Figure 1). A time shift of 15 ms (skipping

the first 60 samples) on the raw signal before wavelet processing is sufficient for the fourth D8 doublet to better match the raw sEMG signal than when no time shift is

applied to the raw signal as in (A).
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was purely voluntary, gender-neutral, age-neutral. Pool consisted
of 60% females–40% males, in the 40’s age group. Excluded
were such vulnerable subjects as pregnant women, mentally
disabled persons, prisoners, subjects with chronic illnesses, and
low income workers. Included were quadriplegic patients and
children, but no children participated.

The sample size of the quadriplegic subjects is very small
for obvious reasons. This translates in a low burst sample size
compared with control subject. Given this limitation, the best
that could have been done was to rely on the robustness of
the Weibull distribution, which has historically been specially
devised for small sample sizes (see section 3). Admittedly, if
more quadriplegic patients become available, results might have
to be revised.

The fact that the recruited quadriplegic subjects were
experiencing partial recovery from their spinal cord injuries
provided further data on how the quantitative properties of
the “doublets” relate to their neuro-skeletal function deficit
as compared with control subjects. To draw an objective
comparison between quadriplegic and control subjects, every
quadriplegic subject had its recording taken during the same
session as a control subject.

2.2. Methods: Electrode Placement
The data utilized in this investigation have been recorded over a
period of a little more than 10 years. All along those recordings,
we have followed a consistent recording protocol: Surface
electromyography (sEMG) reduced-noise tripolar electrodes
(“Uni Patch Tyco EMG Electrodes Round Disk 7500 2.25
diameter Ag snaps” with two inputs to a differential amplifier
and one grounding electrode) were placed at cervical (C2-C3),
thoracic (T4-T6), lumbar (L3), and sacral (S2-S4) positions; all
with the same sampling rate of 4,000 samples per second. The
sensitive input prongs of the front-end electronics were initially
at a 45-deg. angle with themuscle fibers and subsequently aligned
with the back-muscle fibers, without significant difference
observed in the results.

2.3. Methods: Equipment
The most recent (<4 years) recordings were made with an
Insight Discover sEMG station together with a Measurement
ComputingTM USB-1608FS device for analog-to-digital
conversion, while the earlier recordings (10 years ago)
were done with an Insight Millennium sEMG station
interfaced with a Computer Board PCMCIA DAS16/16
card analog-to-digital converter.

The consistency of the results across two experimental
platforms indicates that the observed doublet phenomena
are unlikely to be due to artifacts of the experimental
equipment (Martin del Campo and Jonckheere, 2016; Martin del
Campo and Jonckheere, 2017).

2.4. Methods: Wavelet Transform
We picked up the Daubechies 3 (db3) wavelet decomposition,
originally for the motivation that its D8 subband provided the
best correlations among such subband of signals recorded at
different points along the spine, hence promoting the “coherence

at a distance” aspect (Jonckheere et al., 2010). Later, however,
it was discovered that under some conditions the D7 subband
was preferable (Martin del Campo and Jonckheere, 2017).
Parallel to this line of thoughts, it was found by the present
and other investigators that the mother function of the db3
mimics the MUAPs detected by the electrodes, which makes
the DB3 the ideal tool for picking up relevant waveforms in an
otherwise messy sEMG signal corrupted by noise and motion
artifacts (Sloboda and Zatsiorsky, 1997; Jonckheere et al., 2010).

2.5. Methods: Waveform Matching
To solve the “shift variance” problem of the DWT of many
signals causing in our particular application some of the D8
doublets not to have well-defined peaks and dips (see doublet
#4 in Figure 2A), or causing the πκρστ peaks and dips to be
horizontally offset with respect to the raw sEMG (see the ρ-
peak of D8 doublets #1 and #3 in Figure 2A), we then shifted
the sampling times of the wavelet coefficients by delaying the
time at which the DWT begins (Bradley, 2003). This makes the
coefficients span different sections of the same raw sEMG signal.

A matching increment of the π-wave, πκ-slope, κ-wave, κρ-
slope, ρ-wave, ρσ -slope, σ -wave, στ -slope, and τ -wave with the
raw sEMG burst around doublet #4 of Figure 2A is obtained
by omitting the first 20, 40, and 60 samples (see Figures 3B–D,
respectively) before wavelet processing. This results in recovering
the precise peak-dip sequence of the πκρστ complex of doublet
#4”’ in the raw burst signal, until achieving the benchmark
waveform match of Figure 1.

Due to the variability in the occurrence of the bursts,
the process of delaying the raw sEMG signal before wavelet
processing to achieve optimal waveform matching is different
from one raw bursting waveform to another one. Figure 2B
shows how the best-suited time delay for doublet #4”’ is not the
best suited for doublets #1”’, #2”’, #3”’, as compared with doublets
#1, #2, #3 of Figure 2A when no time delay had been applied.

To make the above procedure optimal, the errors of this
πκρστ waveform vs. sEMG burst are gathered in a multi-
objective optimization function, of which the Pareto front
is identified using expert rules. If a given delay for the
πκρστ waveform parameters is on the Pareto-optimal front
as in Figure 3D, then this provides a good match; whereas if
some delays are not on the Pareto-optimal front as those in
Figures 3A–C, then they do not provide a good match.

The expert system that automatically obtains the minimal
error between the ρ-wave locations of each D8 doublet and its
raw burst (vertical lines in Figure 3), consist of a series of nested
conditional statements (if-then-else rules depicted in Figure 4)
inside a for loop, with index value that identifies the chronological
position of each doublet appearing in the time series.

Due to the raw sEMG signal being corrupted with high-
frequency noise, and in order to increase the precision in finding
the times at local maxima for each D8 doublet, a Savitzky-Golay
filter is first applied to the raw sEMG before being processed
by the expert system. The number “d” of testing delays used in
the present paper to exemplify the waveformmatching technique
is preset to 3, where values of 5 ms, 10 ms, and 15 ms have
been assigned for each delay time. It is worth noting that the
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FIGURE 3 | Raw thoracic surface electromyographic signal of control subject

#4 centered around doublet #4 of Figure 2, superimposed with its 8-level

wavelet transformed sub-signal when (A) no delay, (B) 5 ms delay, (C) 10 ms

delay, and (D) 15 ms delay is applied to the raw sEMG signal before wavelet

processing. The peak time errors of the ρ-wave are |e4|>|e4′ | > |e4′′ | > |e4′′′ |;

thus, the D8 doublet with the smallest error (#4”’) belongs to the

Pareto-optimal front, whereas doublets #4, #4’, and #4” do not.

expert system also considers the case of no delay time for the D8
doublets that are naturally matched with the sEMG bursts, which
is represented with a zero-delay time.

The whole sEMG signal processing technique, from data
collection to probability distribution fitting, passing through
multi-delayed 8-level DWT, smooth filtering, and the expert rules
is depicted in the flowchart of Figure 4.

2.6. Methods: Histogram vs. Theoretical
Probability Distribution of Return Times
and Statistical Software
There are two ways to construct the histogram of the time
between the ρ-waves of successive D8 waveforms, or “return
time” for short. In one procedure are included in the sample

set only those ρρ-intervals between ρ-waves that are naturally
matched with their corresponding bursts (without time shifting),
discarding those that do not appear to match, such as doublet #4
of Figure 2A. However, some doublets might appear to naturally
match with their sEMG bursts—for instance, doublets #1 and #3
of Figure 2A—and considering the ρ-wave locations of these two
doublets would add undesired observational systematic errors
to the distribution fit analysis since a better match was found
by the expert system (see doublets #1’ and #3’ of Figure 5).
These unwanted errors can be eliminated in the other “enhanced”
procedure achieved with the expert system and the time-
shifted DWT at various time delays; thus, the latter procedure
is preferred.

In the enhanced procedure, the histogram is constructed
with accrued accuracy with ρρ-intervals after optimal (on the
Pareto-optimal front) time shifting to match all bursts with their
respective D8’s. The latter, by the same token, also increases the
sample size.

The statistical software SAS R© Studio 3.4 and JMP Pro 13
(both by the SAS Institute) were used to find the best theoretical
probability distribution fit from the frequency histograms
of doublet return times based on the (corrected) Akaike
Information Criterion (AICc) for model selection; the results are
summarized in Tables A1–A3 in Appendix. In the case where the
Weibull distribution was the best ranked in the AICc sense, it was
checked for a goodness of fit using the Cramer-vonMises-W test.
As for the best-ranked normal mixture distribution, the Pearson’s
chi-squared test was used. In both cases, the null hypothesis (H0)
states that the observed frequency distribution is consistent with
the estimated theoretical distribution, and small p-values (<0.05)
would rejectH0 in favor of the alternative hypothesis (H1) that the
data is not from the theoretical distribution.

2.7. Methods: Model Selection Criterion
and Sample Size Guidelines
2.7.1. Best Fitting Probability Distribution
Akaike’s approach to finding the best probability distribution
fit is a Maximum Likelihood Estimation technique that seeks
to provide a measure of fitting relative to distinct probability
models by estimating parameters that maximize their Likelihood
function (Akaike, 1974).

The corrected Akaike Information Criterion (correction for
overfitting), is defined as AICc = AIC +

2k(k+1)
n−k−1

, where n is
the sample size, k is the number of parameters, and AIC =

2k− 2LogLikelihood(θ), where θ represents the parameters to be
estimated for a given model.

Let X1, X2, . . . , Xn be a set of continuous random samples
with joint density function fθ (X) depending on the parameters
θ . The Likelihood function L(θ) = fθ (x1, x2, . . . , xn),
sometimes written as L(θ |x), is the joint probability distribution
fθ (x1, x2, . . . , xn) with parameters θ of the set of n random
variables evaluated at the observed values from the sample. In
practice, the Likelihood function factors as fθ (x1)fθ (x2) . . . fθ (xn).
The LogLikelihood represents the natural log of the Likelihood
function, which is often preferred as it simplifies the calculations
of critical values.
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FIGURE 4 | Complete sEMG signal processing and analysis flowchart: The raw sEMG signal passes through d predefined delays to time shift its 8-level sub-signal

and its smoothed sEMG signal. In the example of this paper, the number of delays is d = 3, with values of θ0 = 0 ms, θ1 = 5 ms, θ2 = 10 ms, θ3 = 15 ms, a guideline

for defining the delay values is less than one cycle (≤30 ms) since Figure 3 spans half cycle (15 ms). The expert system finds the minimal error between local

maximum of the sEMG burst and ρ-wave of its 8-level sub-signal (shown in Figure 3) among the (d + 1) pairs of signals that come from the same sEMG trace,

enhancing waveform matching and providing the Pareto front ρρ-interval times (and/or ρ-wave magnitudes) for probability distribution analysis.

Since there is no prior knowledge of the underlying
distribution of D8 doublet return times, the AICc—by means of
estimating the parameters that provide the largest plausibility for

obtaining the observed values for several probability models—
provides a point of comparison among probability models that
the samples are most likely to come from, serving as a means for
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model selection. Some of the models tested face-to-face in this
sense include the Gamma, Weibull, Exponential, LogNormal,
GLog, Johnson Su, Johnson Sl, Gaussian, and Normal 2 & 3
Mixture probability densities.

The Akaike Information Criterion reformulates the
maximization of the LogLikelihood function by working
with its negative value (minimization of the LogLikelihood
function), in such case, lower values of AICc denote better model
fits (Akaike, 1974).

Since the AICc only provides a ranking among different types
of distributions and does not warn for poorly fitted models,
a Goodness-of-fit test for the model with the lowest AICc
complements this part of the model selection technique, ensuring
that the best-ranked model represents a good fit.

2.7.2. Sample Size Guidelines
To construct guidelines on the minimum and the maximum
number of return times to consider in the distribution fit analysis,
we performed simulations (with 5,000 trials at different sample
sizes in the range from 5 to 5,000) by random sampling from an
underlying distribution and obtained the number of times a given
distribution was the best fit in the AICc sense.

The two-parameter Weibull distribution (α,β)

f (x;α,β) =
β

α

( x

α

)β−1
e−( x

α )
β

; for α,β > 0; x ≥ 0,

where α and β are the scale and shape parameters, respectively,
was found to be the most robust at small sample sizes as it
required the smallest sample size (n) to be identified as the best
fit most of the trials (Figure A1 in Appendix). For instance, at
least n ≈ 6 samples were required to achieve ∼50% success
rate for several values of α and β , compared with Gamma

(

λ = 4, scale = 1
)

with at least n ≈ 26 with ∼32% success rate,
Gaussian

(

µ = 100, σ 2 = 302
)

with at least n ≈ 130 with∼40%
success rate, among others shown in Figure A2 in Appendix. Due
to the high robustness of theWeibull distribution at small sample
sizes that we observed with simulations, it is not surprising that
theWeibull distribution is widely applied in reliability tests, often
hampered with small sample sizes (Hisada and Arizino, 2002; Lu
and Wang, 2008; Jiang et al., 2015).

In regard to the maximum number of return times to
consider in the distribution fitting analysis, a stopping rule can
be determined when the AICc approaches a minimum value,
meaning that the percentage change of AICc approaches zero as
the sample size increases (Figures A3, A4 in Appendix).

3. RESULTS

3.1. Results: Waveform Matching
Although the time localization in the first three doublets of
Figure 2A were lost in the process to retrieve the ρ-wave of D8
doublet #4, as shown in Figure 2B, the expert system recovered
and found the Pareto time localization of the other doublets at
each predefined delay.

With the predefined values used to exemplify the waveform
matching technique (0, 5, 10, and 15 ms), the delays θ1 = 5 ms
for doublet #1’, θ0 = 0 ms for doublet #2, θ1 = 5 ms for doublet
#3’, and θ3 = 15ms for doublet #4”’ have been found by the expert
system to be on the Pareto front (see Figure 5).

3.2. Results: Theoretical Probability
Distributions
Among all the paraspinal signals, the Weibull distribution
was found to be the best probability fit in the AICc sense

FIGURE 5 | Zoom around each burst of raw thoracic sEMG trace (in red) of subject #4, overlaid with its 8-level sub-signal (in green) and its scalogram below

(Conventions are the same as in Figure 1). The D8 doublets #1’, #2, #3’, and #4”’ correspond to time-shifting the DWT at their respective Pareto front time delays of

5, 0, 5, and 15 ms, resp., obtained for each doublet by the expert system.
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among the quadriplegic subjects as shown in Figures 7A,B,
whereas the Normal 2 & 3 Mixtures were prevalently the best
fit among control subjects as shown in Figures 6A–D. The
parameter estimates for the best-fitted distributions are reported
in Tables A1–A3 (Appendix).

3.3. Results: Control vs. Quadriplegic
Subjects
The contrasting difference in the results of the present study
between quadriplegic and control patients, namely in their
probability distributions of doublet return times and sample

FIGURE 6 | Probability distribution fitting of return times from healthy subjects: (A) lumbar spine signal of Subject #6 with Normal 2 Mixture (AICc = −272.53), Normal

3 Mixture (AICc = −265.98), and Weibull (AICc = −199.41), (B) sacral signal of Subject #8 with Normal 3 Mixture (AICc = −187.61), Normal 2 Mixture

(AICc = −186.31), and Weibull (AICc = −167.78), (C) cervical signal of Subject #5 with Normal 3 Mixture (AICc = −95.26), Normal 2 Mixture (AICc = −87.19), and

Weibull (AICc = −51.56), and (D) cervical signal of Subject #8 with Normal 2 Mixture (AICc = −236.16), Normal 3 Mixture (AICc = −230.59), and Weibull

(AICc = −194.86). Lower AICc values indicate a better distribution fit.

FIGURE 7 | Probability distribution fitting of return times from patients with quadriplegia: (A) Thoracic signal of Subject #2 with Weibull (AICc = −45.69), Normal 2

Mixture (AICc = −41.36), and Normal 3 Mixture (AICc = −35.46), (B) lumbar spine signal of Subject #1 with Weibull (AICc = −231.43), Normal 2 Mixture

(AICc = −227.36), and Normal 3 Mixture (AICc = −227.12). Lower AICc values indicate a better distribution fit.
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sizes, points to “doublets” becoming more prevalent (and with
multimodal return times) in healthy neuromuscular systems than
unhealthy ones. Furthermore, the more predominant rhythmic
synchronization of neurophsyological activity of healthy subjects
is consistent with the hypothesis that coherence at a distance is an
indication of the nervous system able to coordinate the activity
of many muscles (Farmer, 1998; Farmer et al., 1998; Jonckheere
et al., 2010).

More specifically, the empirical distribution of the time
intervals between successive bursts differ from one subject to
another, but the types of continuous probability distributions
already differentiates the BRV of quadriplegic (Figures 7A,B)
vs. control subjects (Figures 6A–D). The quadriplegic subjects
consistently presented theWeibull distribution as the best fit, and
mixtures of normal distributions in the case of control subjects;
this discrepancy already points to some neurophysiological
applications of BRV. Note that the Weibull distribution is known
as a Type III Extreme Value distribution (Faranda et al., 2012).

4. DISCUSSION

4.1. Daubechies 3 (db3) vs. Other Wavelet
Mother Functions
In earlier studies, a wavelet similar to db3, the Daubechies 4
(db4), did not provide satisfactory results as it failed to pick
up the onset of some bursts as accurately as the db3 did
it (Jonckheere et al., 2010; Martin del Campo and Jonckheere,
2016; Martin del Campo and Jonckheere, 2017). Additionally,
the db3 mother function adhered more to the “pointy” shape
of observed crests and troughs of electromyographic bursts than
the smoother db4 mother function. Another wavelet tested face-
to-face against db3, the Daubechies 2 (db2), did not show clear
boundaries between the bursts start and end points, compared
to the db3. Finally, it was also found that the D8 of the
db3 allowed for accurate localization of sEMG bursts most of
the times.

4.2. Neurophysiological Personality
In the present study, we hypothesize that the rhythmic
bursts represent a synchronization of multiple MUAPs firing
exceptional doublets, and that there is a probable connection
between them and the dynamical system theory of the return
time of rare events (Haydn et al., 2005, 2014), the Generalized
Extreme Value (GEV) theory of such rare events (Freitas et al.,
2010; Freitas et al., 2011) and the neurophysiological studies
by Piotrkiewicz et al. (2013). In the last-mentioned studies,
double-firing motor units classified as single, repetitive, and
exceptional doublets, constituted a small percentage (9.5%) of
recorded neuronal discharges and were considered as “unusual”
discharges, whereas the exceptional type was even more unusual
(∼1%).

It is worth pointing out that in this CPG entrainment
technique those doublets deemed exceptional can be reproduced
at will, in contrast to the studies by Piotrkiewicz, where the
volunteers were not trained to evoke doublets (Piotrkiewicz et al.,
2013).

In regard to themorphology of theD8 doublets, our conjecture
is that the κ and τ waves are the result of a first and a second
motor unit firing, respectively, whereas the κρσ -complex would
be the result arising from some superposition between multiple
first and second motor unit firings.

4.3. Heart Rate Variability vs. Bursting Rate
Variability
Similar to the normal resting heart rate range from 60 to 100
beats perminute (Peterkova and Stremy, 2015), here the observed
doublet return time rate is between 60 and 88 cycles per minute
on average among all the volunteers, which indicates a possible
connection between HRV and BRV.

The observed D8 doublets that are absent during muscle
relaxation, mild voluntarily contractions of the trunk, and while
the person is not being entrained (see left panel of Figure 2
of Jonckheere et al., 2010) have different time parameters as those
observed in a clinical ECG. Table 3.1 in Clifford et al. (2006)
shows that the typical P-wave, QRS-complex, and corrected QT-
interval durations for a healthy male adult have normal values
and limits of 110 ± 20 ms, 100 ± 20 ms, and 400 ± 40 ms
respectively. Thus, a typical cardiac PQRST-wave duration would
span a total of 510 ± 60 ms. Furthermore, Figure 3 of Peterkova
and Stremy (2015) shows a textbook example of an ECG cycle in
normal conditions with a total duration of∼570 ms.

In this sEMG phenomenon, the πκρστ -wave and the κρσ -
complex span shorter durations of ∼130 ms and ∼60 ms resp.,
compared with the equivalent cardiac PQRST-wave and QRS-
complex durations of 510± 60 and 110± 20 ms resp.

Besides the difference in total wavelength between the cardiac
cycle and “doublets,” it is worth stressing that here variability does
not appear to occur within the doublet but rather in its return
time, as the πκρστ wave duration of ∼130 ms appears to be
prevailingly fixed among doublets. This is unlike HRV, where a
considerable amount of variability occurs among waves within
same cardiac cycles (e.g., QT prolongation, Postema and Wilde,
2014).

To further exemplify the difference between a pure ECG trace
and theπκρστ wave found here in the sEMG traces, studies show
that the return time distributions of R-waves in ECG recordings
have been found Erlang in normal subjects, and a weighted
average of Erlang with a second distribution (e.g., Weibull) in
patients with arrhythmia (Ariaei et al., 2008, 2015).

4.4. Off-Line and On-Line Bursting Rate
Variability for Biofeedback Applications
For biofeedback applications, our objective is to help quadriplegic
patients recover some motor control by learning how to evoke
more doublet oscillations with return time distribution deviating
fromWeibull toward normal mixtures.

Another objective is to conduct on-line assessments by means
of implementing the complete off-line technique described in
section 2.5 with real-time DWT (Jaber and Bicker, 2015). For
real-time muscle performance evaluations, it would reinforce the
training process to help increase the number of synchronized
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motor units, resulting in stronger muscle contractions (Semmler,
2002).

The proposed technique is not restricted to only paraspinal
muscles as it may span the evaluation of the neuromuscular
system to a broader extent—for instance, to assess rhythmic
involuntary contractions such as tremors, or uterine contractions
in pregnancy. In the former, it could provide feedback to
therapies in the field. In the latter, it would monitor the return
times of uterine EMG bursts to potentially warn for signs of
imminent, false, or preterm labor (Lucovnik et al., 2011).

4.5. Physiological Issue Underlying BRV
Probably the most challenging physiological problem to be
addressed in BRV is the determination of whether the observed
doublets recorded as muscle electric activity is produced by a
single motor neuron discharging two closely spaced MUAPs, or
by twomotor neurons each carrying closely time-spacedMUAPs.
The decomposed EMG (dEMG) or related technology might give
the answer.

5. CONCLUSIONS

Themajor contribution in this paper is the identification of a new
neurophysiological phenomenon—the Bursting Rate Variability
that bears some resemblance to Heart Rate Variability, but
that still differs from it in several respects, mainly single vs.
double discharge. BRV is based on recursively shifting the
Daubechies 3 wavelet transform of the raw electromyographic
signal to successively provide time-localization and waveform
characterization of spiking events by optimizing the waveform
matching of the raw signal and its 8-level sub-signal. This 8-
level subsignal in the raw SEMG signal is here referred to as
“D8 doublets” due to the two adjacent and relatively high detail
coefficients that span the entire rhythmic spiking phenomenon.

The presence of such D8 doublets in the sEMG signal has
been conjectured to reveal coordination of muscle masses at
a distance to achieve a higher hierarchy level movement. The
return time statistic of the D8 doublets developed here adds some
quantitative insights to this observation, with transition from
Weibull to normal mixture distribution a possible indication of
a quadriplegic subject recovering some motor control.

Cardiology applications and a plausible connection with ECG
remain to be assessed by including electrocardiogrammonitoring
to our protocol and recording sEMG simultaneously.

Finally, from a theoretical viewpoint, this research is related to
the statistic of return time of a dynamical system to some subset
of its state space. The more recent Generalized Extreme Value

(GEV) theory, which proceeds from the statistic of the extreme
value of an observable (e.g., a sEMG signal) rather than the return
time of such events, could offer an alternative way to look at the
same phenomenon.
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